Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 130137 by mathmax by abdo last updated on 22/Jan/21

calculate for n integr natural A_n =∫_0 ^∞  ((lnx)/(1+x^n ))dx   (n≥2)

$$\mathrm{calculate}\:\mathrm{for}\:\mathrm{n}\:\mathrm{integr}\:\mathrm{natural}\:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:\:\:\left(\mathrm{n}\geqslant\mathrm{2}\right) \\ $$

Answered by Dwaipayan Shikari last updated on 22/Jan/21

I(a)=∫_0 ^∞ (x^a /(1+x^n ))dx  I(a)=(1/n)∫_0 ^∞ (u^((a−n+1)/n) /(1+u))du                 x^n =u  I(a)=(1/n)∫_0 ^1 t^((((a+1)/n))−1) (1−t)^(−(((a+1)/n))) dt=(1/n).Γ(((a+1)/n))Γ(1−((a+1)/n))  =(π/(nsin(((a+1)/n)π)))  I′(a)=−(π^2 /n^2 )cosec(((a+1)/n)π)cot(((a+1)/n)π)  I′(0)=− (π^2 /n^2 ).((cos((π/n)))/(sin^2 ((π/n))))=∫_0 ^∞ ((logx)/(1+x^n ))dx

$${I}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \frac{{x}^{{a}} }{\mathrm{1}+{x}^{{n}} }{dx} \\ $$$${I}\left({a}\right)=\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} \frac{{u}^{\frac{{a}−{n}+\mathrm{1}}{{n}}} }{\mathrm{1}+{u}}{du}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{{n}} ={u} \\ $$$${I}\left({a}\right)=\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\left(\frac{{a}+\mathrm{1}}{{n}}\right)−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{−\left(\frac{{a}+\mathrm{1}}{{n}}\right)} {dt}=\frac{\mathrm{1}}{{n}}.\Gamma\left(\frac{{a}+\mathrm{1}}{{n}}\right)\Gamma\left(\mathrm{1}−\frac{{a}+\mathrm{1}}{{n}}\right) \\ $$$$=\frac{\pi}{{nsin}\left(\frac{{a}+\mathrm{1}}{{n}}\pi\right)} \\ $$$${I}'\left({a}\right)=−\frac{\pi^{\mathrm{2}} }{{n}^{\mathrm{2}} }{cosec}\left(\frac{{a}+\mathrm{1}}{{n}}\pi\right){cot}\left(\frac{{a}+\mathrm{1}}{{n}}\pi\right) \\ $$$${I}'\left(\mathrm{0}\right)=−\:\frac{\pi^{\mathrm{2}} }{{n}^{\mathrm{2}} }.\frac{{cos}\left(\frac{\pi}{{n}}\right)}{{sin}^{\mathrm{2}} \left(\frac{\pi}{{n}}\right)}=\int_{\mathrm{0}} ^{\infty} \frac{{logx}}{\mathrm{1}+{x}^{{n}} }{dx} \\ $$$$ \\ $$

Commented by Lordose last updated on 22/Jan/21

Nice sir

$$\mathrm{Nice}\:\mathrm{sir}\: \\ $$

Answered by mathmax by abdo last updated on 23/Jan/21

A_n =∫_0 ^∞  ((lnx)/(1+x^n ))dx we do the chamgement x=t^(1/n)  ⇒  A_n =(1/n^2 )∫_0 ^∞   ((t^((1/n)−1) ln(t))/(1+t))dt ⇒n^2  A_n =∫_0 ^∞  (t^((1/n)−1) /(1+t))lnt dt let  f(a)=∫_0 ^∞  (t^(a−1) /(1+t))dt ⇒f(a)=(π/(sin(πa))) (o<a<1) we have  f^′ (a) =∫_0 ^∞ (∂/∂a)( (e^((a−1)lnt) /(1+t)))dt =∫_0 ^∞  ((lnt t^(a−1) )/(1+t))dt ⇒n^2  A_n =f^′ ((1/n)) wehave  f^′ (a)=−((π^2 cos(πa))/(sin^2 (πa))) ⇒f^′ ((1/n))=−π^2  ((cos((π/n)))/(sin^2 ((π/n)))) ⇒  A_n =−(π^2 /n^2 )×((cos((π/n)))/(sin^2 ((π/n))))

$$\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnx}}{\mathrm{1}+\mathrm{x}^{\mathrm{n}} }\mathrm{dx}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{chamgement}\:\mathrm{x}=\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{n}}} \:\Rightarrow \\ $$$$\mathrm{A}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{n}}−\mathrm{1}} \mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:\Rightarrow\mathrm{n}^{\mathrm{2}} \:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{n}}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{lnt}\:\mathrm{dt}\:\mathrm{let} \\ $$$$\mathrm{f}\left(\mathrm{a}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{a}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:\Rightarrow\mathrm{f}\left(\mathrm{a}\right)=\frac{\pi}{\mathrm{sin}\left(\pi\mathrm{a}\right)}\:\left(\mathrm{o}<\mathrm{a}<\mathrm{1}\right)\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{f}^{'} \left(\mathrm{a}\right)\:=\int_{\mathrm{0}} ^{\infty} \frac{\partial}{\partial\mathrm{a}}\left(\:\frac{\mathrm{e}^{\left(\mathrm{a}−\mathrm{1}\right)\mathrm{lnt}} }{\mathrm{1}+\mathrm{t}}\right)\mathrm{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{lnt}\:\mathrm{t}^{\mathrm{a}−\mathrm{1}} }{\mathrm{1}+\mathrm{t}}\mathrm{dt}\:\Rightarrow\mathrm{n}^{\mathrm{2}} \:\mathrm{A}_{\mathrm{n}} =\mathrm{f}^{'} \left(\frac{\mathrm{1}}{\mathrm{n}}\right)\:\mathrm{wehave} \\ $$$$\mathrm{f}^{'} \left(\mathrm{a}\right)=−\frac{\pi^{\mathrm{2}} \mathrm{cos}\left(\pi\mathrm{a}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\pi\mathrm{a}\right)}\:\Rightarrow\mathrm{f}^{'} \left(\frac{\mathrm{1}}{\mathrm{n}}\right)=−\pi^{\mathrm{2}} \:\frac{\mathrm{cos}\left(\frac{\pi}{\mathrm{n}}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{n}}\right)}\:\Rightarrow \\ $$$$\mathrm{A}_{\mathrm{n}} =−\frac{\pi^{\mathrm{2}} }{\mathrm{n}^{\mathrm{2}} }×\frac{\mathrm{cos}\left(\frac{\pi}{\mathrm{n}}\right)}{\mathrm{sin}^{\mathrm{2}} \left(\frac{\pi}{\mathrm{n}}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com