Question Number 39019 by maxmathsup by imad last updated on 01/Jul/18 | ||
![]() | ||
$${calculate}\:\int\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{value}\:{of}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$ | ||
Commented by math khazana by abdo last updated on 02/Jul/18 | ||
![]() | ||
$$\left.\mathrm{2}\right)\:\:\int_{\mathrm{0}} ^{+\infty} \:{F}\left({x}\right){dx}\:=\left[\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{arctan}\left(\frac{{x}}{\sqrt{\mathrm{2}}}\right)\right. \\ $$$$\left.+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:{arctan}\left(\frac{{x}}{\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\frac{\pi}{\mathrm{4}}\:−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\frac{\pi}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\frac{\pi}{\mathrm{2}}\:=\frac{\pi}{\mathrm{4}}\:−\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}}\:+\frac{\pi}{\mathrm{4}\sqrt{\mathrm{3}}}\:. \\ $$$$ \\ $$$$ \\ $$ | ||
Commented by math khazana by abdo last updated on 02/Jul/18 | ||
![]() | ||
$${let}\:{decompose}\:{F}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$$$=\:\frac{\mathrm{1}}{\left({u}+\mathrm{1}\right)\left({u}+\mathrm{2}\right)\left({u}+\mathrm{3}\right)}\:={g}\left({u}\right)\:\:\:\left({u}={x}^{\mathrm{2}} \right) \\ $$$${g}\left({u}\right)=\frac{{a}}{{u}+\mathrm{1}}\:+\frac{{b}}{{u}+\mathrm{2}}\:+\frac{{c}}{{u}+\mathrm{3}} \\ $$$${a}=\:\frac{\mathrm{1}}{\mathrm{2}}\:,\:\:{b}=\:−\frac{\mathrm{1}}{\mathrm{2}}\:\:,\:\:{c}=\:\:\frac{\mathrm{1}}{\left(−\mathrm{2}\right)\left(−\mathrm{1}\right)}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:−\frac{\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} \:+\mathrm{2}\right)}\:\:+\frac{\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$$$\int\:{F}\left({x}\right){dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{3}}\:+{c} \\ $$$$\int\:\:\:\frac{{dx}}{{x}^{\mathrm{2}\:} +\mathrm{1}}\:={arctanx}\:+{c}_{\mathrm{1}} \\ $$$$\int\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{2}}\:=_{{x}=\sqrt{\mathrm{2}}{u}} \:\int\:\:\:\:\frac{\sqrt{\mathrm{2}}{du}}{\mathrm{2}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:{arctan}\left(\frac{{x}}{\sqrt{\mathrm{2}}}\right)\:+{c}_{\mathrm{2}} \\ $$$$\int\:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{3}}\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}{arctan}\left(\frac{{x}}{\sqrt{\mathrm{3}}}\right)\:+{c}_{\mathrm{3}} \:\Rightarrow \\ $$$$\int\:{F}\left({x}\right){dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left({x}\right)\:−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}{arctan}\left(\frac{{x}}{\sqrt{\mathrm{2}}}\right) \\ $$$$+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}{arctan}\left(\frac{{x}}{\sqrt{\mathrm{3}}}\right)\:+{c}\: \\ $$$$ \\ $$ | ||
Commented by math khazana by abdo last updated on 03/Jul/18 | ||
![]() |