Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86375 by mathmax by abdo last updated on 28/Mar/20

calculate by complex method  ∫_0 ^∞     (dx/(x^2 −x+1))

$${calculate}\:{by}\:{complex}\:{method}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}} \\ $$

Commented by mathmax by abdo last updated on 30/Mar/20

first let find the value of this integral  we have ∫  (dx/(x^2 −x +1)) =∫  (dx/((x−(1/2))^2  +(3/4))) =_(x−(1/2)=((√3)/2)u)   (4/3)∫  (1/(u^2  +1))×((√3)/2)du  =(2/(√3)) arctan(u) +c =(2/(√3))arctan(((2x−1)/(√3)))+C ⇒  ∫_0 ^∞   (dx/(x^2 −x+1)) =[(2/(√3))arctan(((2x−1)/(√3)))]_0 ^(+∞)  =(2/(√3)){ (π/2) +arctan((1/(√3)))}  =(2/(√3)){(π/2) +(π/6)} =(2/(√3)){((4π)/6)} =(2/(√3))×((2π)/3) =((4π)/(3(√3)))  now  let use complex method  the problem come from 0 !  x^2 −x+1 =0 →Δ =−3 ⇒x_1 =((1+i(√3))/2)=e^((iπ)/3)  and x_2 =((1−i(√3))/2) =e^(−((iπ)/3))   ⇒∫  (dx/(x^2 −x+1)) =∫  (dx/((x−e^((iπ)/3) )(x−e^(−((iπ)/3)) )))=(1/(2isin((π/3))))∫ ((1/(x−e^((iπ)/3) ))−(1/(x−e^(−((iπ)/3)) )))dx  =(1/(i(√3)))ln(((x−e^((iπ)/3) )/(x−e^(−((iπ)/3)) ))) +C ⇒  ∫_0 ^∞   (dx/(x^2 −x+1)) =(1/(i(√3)))[ln(((x−e^((iπ)/3) )/(x−e^(−((iπ)/3)) )))]_0 ^(+∞)  =(1/(i(√3))){−ln( e^((2iπ)/3) )}  =−(1/(i(√3)))(((2iπ)/3)) =((2π)/(3(√3)))  not correct the problem comes from0  let change 0 by 1  ∫_1 ^(+∞)   (dx/(x^2 −x+1)) =(2/(√3))[arctan(((2x−1)/(√3)))]_1 ^(+∞)   =(2/(√3)){ (π/2) −arctan((1/(√3)))} =(2/(√3)){(π/2)−(π/6)} =(2/(√3)){(π/3)} =((2π)/(3(√3)))  complex method→∫_1 ^(+∞)  (dx/(x^2 −x+1)) =(1/(i(√3)))[ln(((x−e^((iπ)/3) )/(x−e^(−((iπ)/3)) )))]_1 ^(+∞)   =(1/(i(√3)))(−ln(((1−e^((iπ)/3) )/(1−e^(−((iπ)/3)) ))))  we have  ((1−e^((iπ)/3) )/(1−e^(−((iπ)/3)) )) =((1−(1/2)−i((√3)/2))/(1−(1/2)+i((√3)/2))) =(((1/2)−i((√3)/2))/((1/2)+((i(√3))/2))) =(e^(−((iπ)/3)) /e^((iπ)/3) ) =e^(−((2iπ)/3))  ⇒  ln(...) =−((2iπ)/3) ⇒∫_1 ^(+∞)  (dx/(x^2 −x+1)) =(1/(i(√3)))(((−2iπ)/3)) =((−2π)/(3(√3)))  (probleme of −)  i have 2 remark here    dont use complex method if you have 0 in the integral  the function x→(1/(x^2 −x+1)) is ≥0 ⇒∫_1 ^(+∞)  (dx/(x^2 −x)) ≥0 so  you must eradicate − in the value....

$${first}\:{let}\:{find}\:{the}\:{value}\:{of}\:{this}\:{integral} \\ $$$${we}\:{have}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}\:+\mathrm{1}}\:=\int\:\:\frac{{dx}}{\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}}\:=_{{x}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{u}} \:\:\frac{\mathrm{4}}{\mathrm{3}}\int\:\:\frac{\mathrm{1}}{{u}^{\mathrm{2}} \:+\mathrm{1}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{du} \\ $$$$=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\:{arctan}\left({u}\right)\:+{c}\:=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}{arctan}\left(\frac{\mathrm{2}{x}−\mathrm{1}}{\sqrt{\mathrm{3}}}\right)+{C}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\:=\left[\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}{arctan}\left(\frac{\mathrm{2}{x}−\mathrm{1}}{\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{0}} ^{+\infty} \:=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left\{\:\frac{\pi}{\mathrm{2}}\:+{arctan}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)\right\} \\ $$$$=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left\{\frac{\pi}{\mathrm{2}}\:+\frac{\pi}{\mathrm{6}}\right\}\:=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left\{\frac{\mathrm{4}\pi}{\mathrm{6}}\right\}\:=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}×\frac{\mathrm{2}\pi}{\mathrm{3}}\:=\frac{\mathrm{4}\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${now}\:\:{let}\:{use}\:{complex}\:{method}\:\:{the}\:{problem}\:{come}\:{from}\:\mathrm{0}\:! \\ $$$${x}^{\mathrm{2}} −{x}+\mathrm{1}\:=\mathrm{0}\:\rightarrow\Delta\:=−\mathrm{3}\:\Rightarrow{x}_{\mathrm{1}} =\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}={e}^{\frac{{i}\pi}{\mathrm{3}}} \:{and}\:{x}_{\mathrm{2}} =\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:={e}^{−\frac{{i}\pi}{\mathrm{3}}} \\ $$$$\Rightarrow\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\:=\int\:\:\frac{{dx}}{\left({x}−{e}^{\frac{{i}\pi}{\mathrm{3}}} \right)\left({x}−{e}^{−\frac{{i}\pi}{\mathrm{3}}} \right)}=\frac{\mathrm{1}}{\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{3}}\right)}\int\:\left(\frac{\mathrm{1}}{{x}−{e}^{\frac{{i}\pi}{\mathrm{3}}} }−\frac{\mathrm{1}}{{x}−{e}^{−\frac{{i}\pi}{\mathrm{3}}} }\right){dx} \\ $$$$=\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}{ln}\left(\frac{{x}−{e}^{\frac{{i}\pi}{\mathrm{3}}} }{{x}−{e}^{−\frac{{i}\pi}{\mathrm{3}}} }\right)\:+{C}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\:=\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\left[{ln}\left(\frac{{x}−{e}^{\frac{{i}\pi}{\mathrm{3}}} }{{x}−{e}^{−\frac{{i}\pi}{\mathrm{3}}} }\right)\right]_{\mathrm{0}} ^{+\infty} \:=\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\left\{−{ln}\left(\:{e}^{\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} \right)\right\} \\ $$$$=−\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\left(\frac{\mathrm{2}{i}\pi}{\mathrm{3}}\right)\:=\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:\:{not}\:{correct}\:{the}\:{problem}\:{comes}\:{from}\mathrm{0} \\ $$$${let}\:{change}\:\mathrm{0}\:{by}\:\mathrm{1} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\:=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left[{arctan}\left(\frac{\mathrm{2}{x}−\mathrm{1}}{\sqrt{\mathrm{3}}}\right)\right]_{\mathrm{1}} ^{+\infty} \\ $$$$=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left\{\:\frac{\pi}{\mathrm{2}}\:−{arctan}\left(\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)\right\}\:=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left\{\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{6}}\right\}\:=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}}\left\{\frac{\pi}{\mathrm{3}}\right\}\:=\frac{\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${complex}\:{method}\rightarrow\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\:=\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\left[{ln}\left(\frac{{x}−{e}^{\frac{{i}\pi}{\mathrm{3}}} }{{x}−{e}^{−\frac{{i}\pi}{\mathrm{3}}} }\right)\right]_{\mathrm{1}} ^{+\infty} \\ $$$$=\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\left(−{ln}\left(\frac{\mathrm{1}−{e}^{\frac{{i}\pi}{\mathrm{3}}} }{\mathrm{1}−{e}^{−\frac{{i}\pi}{\mathrm{3}}} }\right)\right)\:\:{we}\:{have} \\ $$$$\frac{\mathrm{1}−{e}^{\frac{{i}\pi}{\mathrm{3}}} }{\mathrm{1}−{e}^{−\frac{{i}\pi}{\mathrm{3}}} }\:=\frac{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\:=\frac{\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}{\frac{\mathrm{1}}{\mathrm{2}}+\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}}\:=\frac{{e}^{−\frac{{i}\pi}{\mathrm{3}}} }{{e}^{\frac{{i}\pi}{\mathrm{3}}} }\:={e}^{−\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} \:\Rightarrow \\ $$$${ln}\left(...\right)\:=−\frac{\mathrm{2}{i}\pi}{\mathrm{3}}\:\Rightarrow\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\:=\frac{\mathrm{1}}{{i}\sqrt{\mathrm{3}}}\left(\frac{−\mathrm{2}{i}\pi}{\mathrm{3}}\right)\:=\frac{−\mathrm{2}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:\:\left({probleme}\:{of}\:−\right) \\ $$$${i}\:{have}\:\mathrm{2}\:{remark}\:{here}\:\: \\ $$$${dont}\:{use}\:{complex}\:{method}\:{if}\:{you}\:{have}\:\mathrm{0}\:{in}\:{the}\:{integral} \\ $$$${the}\:{function}\:{x}\rightarrow\frac{\mathrm{1}}{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\:{is}\:\geqslant\mathrm{0}\:\Rightarrow\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{2}} −{x}}\:\geqslant\mathrm{0}\:{so} \\ $$$${you}\:{must}\:{eradicate}\:−\:{in}\:{the}\:{value}.... \\ $$$$ \\ $$

Commented by redmiiuser last updated on 31/Mar/20

sir can you pls comment  on my process.

$${sir}\:{can}\:{you}\:{pls}\:{comment} \\ $$$${on}\:{my}\:{process}. \\ $$

Answered by redmiiuser last updated on 30/Mar/20

let x^2 −x=z  (z+1)^(−1)   =Σ_(n=0) ^∞ (−1)^n .z^n   =Σ_(n=0) ^∞ (−1)^n .(x^2 −x)^n   =Σ_(n=0) ^∞ (−1)^n .Σ_(k=0) ^n C_k ^n .(−1)^(n−k) .(x^2 )^k .(x)^(n−k)      =Σ_(n=0) ^∞ Σ_(k=0) ^n (−1)^(2n−k) .C_k ^n .x^(2k+n−k)   ∫^∞ _0 Σ_(n=0) ^∞ Σ_(k=0) ^n i^(2n−k) .C_k ^n .x^(k+n) .dx  =((Σ_(n=0) ^∞ Σ_(k=0) ^n i^(2n−k) .C_k ^n .(∞)^(k+n+1) )/(k+n+1))

$${let}\:{x}^{\mathrm{2}} −{x}={z} \\ $$$$\left({z}+\mathrm{1}\right)^{−\mathrm{1}} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} .{z}^{{n}} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} .\left({x}^{\mathrm{2}} −{x}\right)^{{n}} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} .\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\underset{{k}} {\overset{{n}} {{C}}}.\left(−\mathrm{1}\right)^{{n}−{k}} .\left({x}^{\mathrm{2}} \right)^{{k}} .\left({x}\right)^{{n}−{k}} \:\:\: \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{2}{n}−{k}} .\underset{{k}} {\overset{{n}} {{C}}}.{x}^{\mathrm{2}{k}+{n}−{k}} \\ $$$$\underset{\mathrm{0}} {\int}^{\infty} \underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{i}^{\mathrm{2}{n}−{k}} .\underset{{k}} {\overset{{n}} {{C}}}.{x}^{{k}+{n}} .{dx} \\ $$$$=\frac{\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{i}^{\mathrm{2}{n}−{k}} .\underset{{k}} {\overset{{n}} {{C}}}.\left(\infty\right)^{{k}+{n}+\mathrm{1}} }{{k}+{n}+\mathrm{1}} \\ $$

Commented by redmiiuser last updated on 30/Mar/20

sir can you pls check  the answer.

$${sir}\:{can}\:{you}\:{pls}\:{check} \\ $$$${the}\:{answer}. \\ $$

Commented by mathmax by abdo last updated on 01/Apr/20

not correct sir becsuse (1/(1+z)) =Σ_(n=0) ^∞ (−1)^n z^n   if we have ∣z∣<1  you can this if you have ∣x^2 −x∣<1...

$${not}\:{correct}\:{sir}\:{becsuse}\:\frac{\mathrm{1}}{\mathrm{1}+{z}}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {z}^{{n}} \:\:{if}\:{we}\:{have}\:\mid{z}\mid<\mathrm{1} \\ $$$${you}\:{can}\:{this}\:{if}\:{you}\:{have}\:\mid{x}^{\mathrm{2}} −{x}\mid<\mathrm{1}... \\ $$

Commented by redmiiuser last updated on 01/Apr/20

sir can you pls check   (1/(z+1)) expansion by  Taloyr′s  formula.

$${sir}\:{can}\:{you}\:{pls}\:{check}\: \\ $$$$\frac{\mathrm{1}}{{z}+\mathrm{1}}\:{expansion}\:{by} \\ $$$${Taloyr}'{s}\:\:{formula}. \\ $$

Commented by redmiiuser last updated on 03/Apr/20

for z<1 like z=−l  ∴(1+z)^(−1) =(1−l)^(−1)   =Σ_(n=0 ) ^∞ l^n

$${for}\:{z}<\mathrm{1}\:{like}\:{z}=−{l} \\ $$$$\therefore\left(\mathrm{1}+{z}\right)^{−\mathrm{1}} =\left(\mathrm{1}−{l}\right)^{−\mathrm{1}} \\ $$$$=\underset{{n}=\mathrm{0}\:} {\overset{\infty} {\sum}}{l}^{{n}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com