Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 49810 by Abdo msup. last updated on 10/Dec/18

calculate   S_n (x)=[((x+1)/2)] + [((x+2)/4)] +[((x+4)/8)]+...[((x+2^n )/2^(n+1) )]

$${calculate}\: \\ $$$${S}_{{n}} \left({x}\right)=\left[\frac{{x}+\mathrm{1}}{\mathrm{2}}\right]\:+\:\left[\frac{{x}+\mathrm{2}}{\mathrm{4}}\right]\:+\left[\frac{{x}+\mathrm{4}}{\mathrm{8}}\right]+...\left[\frac{{x}+\mathrm{2}^{{n}} }{\mathrm{2}^{{n}+\mathrm{1}} }\right] \\ $$

Commented by maxmathsup by imad last updated on 13/Jan/19

S_n (x) =Σ_(k=1) ^n [(x/2^k ) +(1/2)]  now let prove that [t+(1/2)]=[2t]−[t]  let [t]=p  with p from Z ⇒ p≤t<p+1 ⇒2p≤2t<2p+2  p+(1/2)≤t+(1/2)<p+(3/2)   if p+(1/2)≤t+(1/2)<p+1 ⇒[t+(1/2)]=p and we have  2p+1≤2t+1<2p+2 ⇒2p≤2t<2p+1 ⇒[2t]=2p ⇒[2t]−[t]=p=[t+(1/2)]  if  p+1≤t+(1/2)<p+(3/2) we prve also that [2t]−[t]=[t+(1/2)] ⇒  S_n (x)=Σ_(k=1) ^n [((2x)/2^k )]−[(x/2^k )]=Σ_(k=1) ^n  [(x/2^(k−1) )]−[(x/2^k )]  =[x]−[(x/2)]+[(x/2)]−[(x/2^2 )] +....[(x/2^(n−2) )]−[(x/2^(n−1) )] +[(x/2^(n−1) )]−[(x/2^n )]  =[x]−[(x/2^n )] ⇒lim_(n→+∞)    S_n =[x] .

$${S}_{{n}} \left({x}\right)\:=\sum_{{k}=\mathrm{1}} ^{{n}} \left[\frac{{x}}{\mathrm{2}^{{k}} }\:+\frac{\mathrm{1}}{\mathrm{2}}\right]\:\:{now}\:{let}\:{prove}\:{that}\:\left[{t}+\frac{\mathrm{1}}{\mathrm{2}}\right]=\left[\mathrm{2}{t}\right]−\left[{t}\right] \\ $$$${let}\:\left[{t}\right]={p}\:\:{with}\:{p}\:{from}\:{Z}\:\Rightarrow\:{p}\leqslant{t}<{p}+\mathrm{1}\:\Rightarrow\mathrm{2}{p}\leqslant\mathrm{2}{t}<\mathrm{2}{p}+\mathrm{2} \\ $$$${p}+\frac{\mathrm{1}}{\mathrm{2}}\leqslant{t}+\frac{\mathrm{1}}{\mathrm{2}}<{p}+\frac{\mathrm{3}}{\mathrm{2}}\:\:\:{if}\:{p}+\frac{\mathrm{1}}{\mathrm{2}}\leqslant{t}+\frac{\mathrm{1}}{\mathrm{2}}<{p}+\mathrm{1}\:\Rightarrow\left[{t}+\frac{\mathrm{1}}{\mathrm{2}}\right]={p}\:{and}\:{we}\:{have} \\ $$$$\mathrm{2}{p}+\mathrm{1}\leqslant\mathrm{2}{t}+\mathrm{1}<\mathrm{2}{p}+\mathrm{2}\:\Rightarrow\mathrm{2}{p}\leqslant\mathrm{2}{t}<\mathrm{2}{p}+\mathrm{1}\:\Rightarrow\left[\mathrm{2}{t}\right]=\mathrm{2}{p}\:\Rightarrow\left[\mathrm{2}{t}\right]−\left[{t}\right]={p}=\left[{t}+\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$${if}\:\:{p}+\mathrm{1}\leqslant{t}+\frac{\mathrm{1}}{\mathrm{2}}<{p}+\frac{\mathrm{3}}{\mathrm{2}}\:{we}\:{prve}\:{also}\:{that}\:\left[\mathrm{2}{t}\right]−\left[{t}\right]=\left[{t}+\frac{\mathrm{1}}{\mathrm{2}}\right]\:\Rightarrow \\ $$$${S}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{1}} ^{{n}} \left[\frac{\mathrm{2}{x}}{\mathrm{2}^{{k}} }\right]−\left[\frac{{x}}{\mathrm{2}^{{k}} }\right]=\sum_{{k}=\mathrm{1}} ^{{n}} \:\left[\frac{{x}}{\mathrm{2}^{{k}−\mathrm{1}} }\right]−\left[\frac{{x}}{\mathrm{2}^{{k}} }\right] \\ $$$$=\left[{x}\right]−\left[\frac{{x}}{\mathrm{2}}\right]+\left[\frac{{x}}{\mathrm{2}}\right]−\left[\frac{{x}}{\mathrm{2}^{\mathrm{2}} }\right]\:+....\left[\frac{{x}}{\mathrm{2}^{{n}−\mathrm{2}} }\right]−\left[\frac{{x}}{\mathrm{2}^{{n}−\mathrm{1}} }\right]\:+\left[\frac{{x}}{\mathrm{2}^{{n}−\mathrm{1}} }\right]−\left[\frac{{x}}{\mathrm{2}^{{n}} }\right] \\ $$$$=\left[{x}\right]−\left[\frac{{x}}{\mathrm{2}^{{n}} }\right]\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:\:\:{S}_{{n}} =\left[{x}\right]\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Dec/18

T_r =[((x+2^(r−1) )/2^r )]=[(x/2^r )+(1/2)]>[(x/2^r )]+[(1/2)]  [(x/2^r )+(1/2)]>[(x/2^r )]+0  S_n (x)=Σ_(r=1) ^n [(x/2^r )]  value of S_n (x) can be determined when we know  how x related to 2  x=f(2)

$${T}_{{r}} =\left[\frac{{x}+\mathrm{2}^{{r}−\mathrm{1}} }{\mathrm{2}^{{r}} }\right]=\left[\frac{{x}}{\mathrm{2}^{{r}} }+\frac{\mathrm{1}}{\mathrm{2}}\right]>\left[\frac{{x}}{\mathrm{2}^{{r}} }\right]+\left[\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$\left[\frac{{x}}{\mathrm{2}^{{r}} }+\frac{\mathrm{1}}{\mathrm{2}}\right]>\left[\frac{{x}}{\mathrm{2}^{{r}} }\right]+\mathrm{0} \\ $$$${S}_{{n}} \left({x}\right)=\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\left[\frac{{x}}{\mathrm{2}^{{r}} }\right] \\ $$$${value}\:{of}\:{S}_{{n}} \left({x}\right)\:{can}\:{be}\:{determined}\:{when}\:{we}\:{know} \\ $$$${how}\:{x}\:{related}\:{to}\:\mathrm{2} \\ $$$${x}={f}\left(\mathrm{2}\right) \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com