Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 86258 by lémùst last updated on 27/Mar/20

calculate I=∫_1 ^(+∞) ((x^2 −1)/(x^4 −x^2 +1))dx

$${calculate}\:{I}=\int_{\mathrm{1}} ^{+\infty} \frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} +\mathrm{1}}{dx} \\ $$

Commented by mathmax by abdo last updated on 27/Mar/20

I =∫_1 ^(+∞)  ((x^2 −1)/(x^4 −x^2  +1))dx   (complex method)  x^4 −x^2  +1 =0 →t^2 −t+1 =0  (t=x^2 )  Δ=1−4=−3 ⇒t_1 =((1+i(√3))/2)=e^((iπ)/6)   and t_2 =((1−i(√3))/2)=e^(−((iπ)/6))   ⇒((x^2 −1)/(x^4 −x^2  +1)) =((x^2 −1)/((x^2 −e^((iπ)/6) )(x^2  −e^(−((iπ)/6)) ))) =((x^2 −1)/(2isin((π/6)))){(1/(x^2 −e^((iπ)/6) ))−(1/(x^2  −e^(−((iπ)/6)) ))}  =−i(((x^2 −1)/(x^2 −e^((iπ)/6) )) −((x^2 −1)/(x^2  −e^(−((iπ)/6)) ))) =−i(((x^2 −e^((iπ)/6)  +e^((iπ)/6) −1)/(x^2 −e^((iπ)/6) ))−((x^2 −e^(−((iπ)/6)) +e^(−((iπ)/6)) −1)/(x^2 −e^(−((iπ)/6)) )))  =−i{((e^((iπ)/6) −1)/(x^2 −e^((iπ)/6) ))−((e^(−((iπ)/6)) −1)/(x^2 −e^(−((iπ)/6)) ))} ⇒I=i(e^(−((iπ)/6)) −1)∫_1 ^(+∞)  (dx/(x^2 −e^(−((iπ)/6)) ))  −i(e^((iπ)/6) −1)∫_1 ^(+∞) (dx/(x^2 −e^((iπ)/6) ))  ∫_1 ^(+∞)  (dx/(x^2 −e^((iπ)/6) )) =∫_1 ^(+∞)   (dx/((x−e^((iπ)/(12)) )(x+e^((iπ)/(12)) )))  =(1/2)e^(−((iπ)/(12))) ∫_1 ^(+∞)  ((1/(x−e^((iπ)/(12)) ))−(1/(x+e^((iπ)/(12)) )))dx  =(1/2)e^(−((iπ)/(12))) [ln(((x−e^((iπ)/(12)) )/(x+e^((iπ)/(12)) )))]_1 ^(+∞)  =(1/2)e^(−((iπ)/(12))) {−ln(((1−e^((iπ)/(12)) )/(1+e^((iπ)/(12)) )))}  ...becontinued...

$${I}\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}}{dx}\:\:\:\left({complex}\:{method}\right) \\ $$$${x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}\:=\mathrm{0}\:\rightarrow{t}^{\mathrm{2}} −{t}+\mathrm{1}\:=\mathrm{0}\:\:\left({t}={x}^{\mathrm{2}} \right) \\ $$$$\Delta=\mathrm{1}−\mathrm{4}=−\mathrm{3}\:\Rightarrow{t}_{\mathrm{1}} =\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}={e}^{\frac{{i}\pi}{\mathrm{6}}} \:\:{and}\:{t}_{\mathrm{2}} =\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}={e}^{−\frac{{i}\pi}{\mathrm{6}}} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{4}} −{x}^{\mathrm{2}} \:+\mathrm{1}}\:=\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\left({x}^{\mathrm{2}} −{e}^{\frac{{i}\pi}{\mathrm{6}}} \right)\left({x}^{\mathrm{2}} \:−{e}^{−\frac{{i}\pi}{\mathrm{6}}} \right)}\:=\frac{{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{isin}\left(\frac{\pi}{\mathrm{6}}\right)}\left\{\frac{\mathrm{1}}{{x}^{\mathrm{2}} −{e}^{\frac{{i}\pi}{\mathrm{6}}} }−\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:−{e}^{−\frac{{i}\pi}{\mathrm{6}}} }\right\} \\ $$$$=−{i}\left(\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} −{e}^{\frac{{i}\pi}{\mathrm{6}}} }\:−\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} \:−{e}^{−\frac{{i}\pi}{\mathrm{6}}} }\right)\:=−{i}\left(\frac{{x}^{\mathrm{2}} −{e}^{\frac{{i}\pi}{\mathrm{6}}} \:+{e}^{\frac{{i}\pi}{\mathrm{6}}} −\mathrm{1}}{{x}^{\mathrm{2}} −{e}^{\frac{{i}\pi}{\mathrm{6}}} }−\frac{{x}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{6}}} +{e}^{−\frac{{i}\pi}{\mathrm{6}}} −\mathrm{1}}{{x}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{6}}} }\right) \\ $$$$=−{i}\left\{\frac{{e}^{\frac{{i}\pi}{\mathrm{6}}} −\mathrm{1}}{{x}^{\mathrm{2}} −{e}^{\frac{{i}\pi}{\mathrm{6}}} }−\frac{{e}^{−\frac{{i}\pi}{\mathrm{6}}} −\mathrm{1}}{{x}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{6}}} }\right\}\:\Rightarrow{I}={i}\left({e}^{−\frac{{i}\pi}{\mathrm{6}}} −\mathrm{1}\right)\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{2}} −{e}^{−\frac{{i}\pi}{\mathrm{6}}} } \\ $$$$−{i}\left({e}^{\frac{{i}\pi}{\mathrm{6}}} −\mathrm{1}\right)\int_{\mathrm{1}} ^{+\infty} \frac{{dx}}{{x}^{\mathrm{2}} −{e}^{\frac{{i}\pi}{\mathrm{6}}} } \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\frac{{dx}}{{x}^{\mathrm{2}} −{e}^{\frac{{i}\pi}{\mathrm{6}}} }\:=\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{\left({x}−{e}^{\frac{{i}\pi}{\mathrm{12}}} \right)\left({x}+{e}^{\frac{{i}\pi}{\mathrm{12}}} \right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{12}}} \int_{\mathrm{1}} ^{+\infty} \:\left(\frac{\mathrm{1}}{{x}−{e}^{\frac{{i}\pi}{\mathrm{12}}} }−\frac{\mathrm{1}}{{x}+{e}^{\frac{{i}\pi}{\mathrm{12}}} }\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{12}}} \left[{ln}\left(\frac{{x}−{e}^{\frac{{i}\pi}{\mathrm{12}}} }{{x}+{e}^{\frac{{i}\pi}{\mathrm{12}}} }\right)\right]_{\mathrm{1}} ^{+\infty} \:=\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{12}}} \left\{−{ln}\left(\frac{\mathrm{1}−{e}^{\frac{{i}\pi}{\mathrm{12}}} }{\mathrm{1}+{e}^{\frac{{i}\pi}{\mathrm{12}}} }\right)\right\} \\ $$$$...{becontinued}... \\ $$

Commented by lémùst last updated on 28/Mar/20

sir how do you calculate the logarith of a  complex ?

$${sir}\:{how}\:{do}\:{you}\:{calculate}\:{the}\:{logarith}\:{of}\:{a} \\ $$$${complex}\:? \\ $$

Commented by mathmax by abdo last updated on 31/Mar/20

ln(x+iy) =ln((√(x^2 +y^2 ))e^(i arctan((y/x))) )  =(1/2)ln(x^2  +y^2 )+iarctan((y/x))  (principle determination of ln)

$${ln}\left({x}+{iy}\right)\:={ln}\left(\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{e}^{{i}\:{arctan}\left(\frac{{y}}{{x}}\right)} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)+{iarctan}\left(\frac{{y}}{{x}}\right)\:\:\left({principle}\:{determination}\:{of}\:{ln}\right) \\ $$

Answered by TANMAY PANACEA. last updated on 28/Mar/20

∫((1−(1/x^2 ))/(x^2 −1+(1/x^2 )))dx  ∫((d(x+(1/x)))/((x+(1/x))^2 −3))=(1/(2(√3)))ln(((x+(1/x)−(√3))/(x+(1/x)+(√3))))  useing formula ∫(dp/(p^2 −a^2 ))

$$\int\frac{\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} −\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{dx} \\ $$$$\int\frac{{d}\left({x}+\frac{\mathrm{1}}{{x}}\right)}{\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}{ln}\left(\frac{{x}+\frac{\mathrm{1}}{{x}}−\sqrt{\mathrm{3}}}{{x}+\frac{\mathrm{1}}{{x}}+\sqrt{\mathrm{3}}}\right) \\ $$$${useing}\:{formula}\:\int\frac{{dp}}{{p}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$$ \\ $$

Commented by lémùst last updated on 28/Mar/20

thanks sir

$${thanks}\:{sir}\: \\ $$

Commented by TANMAY PANACEA. last updated on 28/Mar/20

most welcome...

$${most}\:{welcome}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com