Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 197024 by mnjuly1970 last updated on 06/Sep/23

        calculate   Ω= ∫_0 ^( (π/2)) sin(x) (√( 1+^  sin(x)cos(x))) dx=?

$$ \\ $$$$\:\:\:\:\:\:{calculate} \\ $$$$\:\Omega=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right)\:\sqrt{\:\mathrm{1}\overset{} {+}\:{sin}\left({x}\right){cos}\left({x}\right)}\:{dx}=? \\ $$$$ \\ $$

Answered by Frix last updated on 06/Sep/23

∫sin x (√(1+sin x cos x)) dx =^(t=x−(π/4))   =∫(((cos t +sin t)(√(1+2cos^2  t)))/2)dt =^(u=tan  t)   =∫(((u+1)(√(u^2 +3)))/(2(u^2 +1)^2 ))du =^(v=((u+(√(u^2 +3)))/( (√3))))   =∫(((√3)((√3)v−1)((√3)v+3)(v^2 +1)^2 )/((3v^4 −2v^2 +3)^2 ))dv =_(Method) ^(Ostrogradski′s)   =−(((√3)v^3 −v^2 +(√3)v+3)/(2(3v^4 −2v^2 +3)))+∫(((√3)v^2 +6v−(√3))/(2(3v^4 −2v^2 +3)))dv=  =−(((√3)v^3 −v^2 +(√3)v+3)/(2(3v^4 −2v^2 +3)))+((√2)/(16))ln ((3v^2 −2(√6)v+3)/(3v^2 +2(√6)v+3))+((3(√2))/8)(tan^(−1)  ((√3)v−(√2)) −tan^(−1)  ((√3)v+(√2)))  x∈[0, (π/2)] ⇒ v∈[((√3)/3), (√3)]  ⇒  Ω=((3(√2)π)/(16))+(1/2)−((3(√2))/8)tan^(−1)  ((√2)/4) ≈1.15281482

$$\int\mathrm{sin}\:{x}\:\sqrt{\mathrm{1}+\mathrm{sin}\:{x}\:\mathrm{cos}\:{x}}\:{dx}\:\overset{{t}={x}−\frac{\pi}{\mathrm{4}}} {=} \\ $$$$=\int\frac{\left(\mathrm{cos}\:{t}\:+\mathrm{sin}\:{t}\right)\sqrt{\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \:{t}}}{\mathrm{2}}{dt}\:\overset{{u}=\mathrm{tan}\:\:{t}} {=} \\ $$$$=\int\frac{\left({u}+\mathrm{1}\right)\sqrt{{u}^{\mathrm{2}} +\mathrm{3}}}{\mathrm{2}\left({u}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{du}\:\overset{{v}=\frac{{u}+\sqrt{{u}^{\mathrm{2}} +\mathrm{3}}}{\:\sqrt{\mathrm{3}}}} {=} \\ $$$$=\int\frac{\sqrt{\mathrm{3}}\left(\sqrt{\mathrm{3}}{v}−\mathrm{1}\right)\left(\sqrt{\mathrm{3}}{v}+\mathrm{3}\right)\left({v}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{\left(\mathrm{3}{v}^{\mathrm{4}} −\mathrm{2}{v}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }{dv}\:\underset{\mathrm{Method}} {\overset{\mathrm{Ostrogradski}'\mathrm{s}} {=}} \\ $$$$=−\frac{\sqrt{\mathrm{3}}{v}^{\mathrm{3}} −{v}^{\mathrm{2}} +\sqrt{\mathrm{3}}{v}+\mathrm{3}}{\mathrm{2}\left(\mathrm{3}{v}^{\mathrm{4}} −\mathrm{2}{v}^{\mathrm{2}} +\mathrm{3}\right)}+\int\frac{\sqrt{\mathrm{3}}{v}^{\mathrm{2}} +\mathrm{6}{v}−\sqrt{\mathrm{3}}}{\mathrm{2}\left(\mathrm{3}{v}^{\mathrm{4}} −\mathrm{2}{v}^{\mathrm{2}} +\mathrm{3}\right)}{dv}= \\ $$$$=−\frac{\sqrt{\mathrm{3}}{v}^{\mathrm{3}} −{v}^{\mathrm{2}} +\sqrt{\mathrm{3}}{v}+\mathrm{3}}{\mathrm{2}\left(\mathrm{3}{v}^{\mathrm{4}} −\mathrm{2}{v}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\sqrt{\mathrm{2}}}{\mathrm{16}}\mathrm{ln}\:\frac{\mathrm{3}{v}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{6}}{v}+\mathrm{3}}{\mathrm{3}{v}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{6}}{v}+\mathrm{3}}+\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{8}}\left(\mathrm{tan}^{−\mathrm{1}} \:\left(\sqrt{\mathrm{3}}{v}−\sqrt{\mathrm{2}}\right)\:−\mathrm{tan}^{−\mathrm{1}} \:\left(\sqrt{\mathrm{3}}{v}+\sqrt{\mathrm{2}}\right)\right) \\ $$$${x}\in\left[\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right]\:\Rightarrow\:{v}\in\left[\frac{\sqrt{\mathrm{3}}}{\mathrm{3}},\:\sqrt{\mathrm{3}}\right] \\ $$$$\Rightarrow \\ $$$$\Omega=\frac{\mathrm{3}\sqrt{\mathrm{2}}\pi}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{8}}\mathrm{tan}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\:\approx\mathrm{1}.\mathrm{15281482} \\ $$

Commented by mnjuly1970 last updated on 06/Sep/23

thank you so much sir Frix

$${thank}\:{you}\:{so}\:{much}\:{sir}\:{Frix} \\ $$$$ \\ $$

Commented by Frix last updated on 06/Sep/23

��

Answered by universe last updated on 10/Sep/23

  2I  = ∫_0 ^(π/2) (sin x+cos x)(√((3/2)−(1/2)(sin x−cos x)^2 ))dx  let  sin x−cos x = t ⇒ (sin x+cos x)dx = dt  I = (1/(2(√2)))∫_(−1) ^1 (√(3 − t^2 ))  dt  I  = (1/( (√2)))∫_0 ^1 (√(((√3))^2 −t^2 ))dt  I  =  (1/( (√2)))[(t/2)(√(3−t^2  )) + (3/2)sin^(−1) (t/( (√3)))]_0 ^1   I  =  (1/(2(√2)))[(√2) + 3sin^(−1) (1/( (√3)))]

$$ \\ $$$$\mathrm{2}{I}\:\:=\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)\sqrt{\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\right)^{\mathrm{2}} }{dx} \\ $$$${let} \\ $$$$\mathrm{sin}\:{x}−\mathrm{cos}\:{x}\:=\:{t}\:\Rightarrow\:\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right){dx}\:=\:{dt} \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{3}\:−\:{t}^{\mathrm{2}} }\:\:{dt} \\ $$$${I}\:\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\left(\sqrt{\mathrm{3}}\right)^{\mathrm{2}} −{t}^{\mathrm{2}} }{dt} \\ $$$${I}\:\:=\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left[\frac{{t}}{\mathrm{2}}\sqrt{\mathrm{3}−{t}^{\mathrm{2}} \:}\:+\:\frac{\mathrm{3}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \frac{{t}}{\:\sqrt{\mathrm{3}}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${I}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\left[\sqrt{\mathrm{2}}\:+\:\mathrm{3sin}^{−\mathrm{1}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right] \\ $$

Commented by mnjuly1970 last updated on 06/Sep/23

thank you so much sir  nice solution

$${thank}\:{you}\:{so}\:{much}\:{sir} \\ $$$${nice}\:{solution} \\ $$

Answered by ajfour last updated on 07/Sep/23

sin ((π/2)−2x)=cos 2x=2t  1−2sin^2 x=2t  −sin 2xdx=dt  ∫=sin xdx(√(1+((sin 2x)/2)))  =(1/( 2(√2)))(√((1−2t)/(1+2t)))((√(2+(√(1−4t^2 ))))/( (√(1−4t^2 ))))dt  ...

$$\mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}}−\mathrm{2}{x}\right)=\mathrm{cos}\:\mathrm{2}{x}=\mathrm{2}{t} \\ $$$$\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} {x}=\mathrm{2}{t} \\ $$$$−\mathrm{sin}\:\mathrm{2}{xdx}={dt} \\ $$$$\int=\mathrm{sin}\:{xdx}\sqrt{\mathrm{1}+\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{2}}}\sqrt{\frac{\mathrm{1}−\mathrm{2}{t}}{\mathrm{1}+\mathrm{2}{t}}}\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{1}−\mathrm{4}{t}^{\mathrm{2}} }}}{\:\sqrt{\mathrm{1}−\mathrm{4}{t}^{\mathrm{2}} }}{dt} \\ $$$$... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com