Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113203 by abdomsup last updated on 11/Sep/20

calculate ∫_0 ^∞    (dx/(x^4  +2x^2 +3))

$${calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}} \\ $$

Answered by 1549442205PVT last updated on 11/Sep/20

Consider f(z)=(1/(z^4 +2z^2 +3))  z^4 +2z^2 +3=0⇔z=−1±i(√2) .Hence  z_1 =−1+i(√2) and z_2 =−1−i(√2) are poles  of degree 1 of the finction f(z)  Res(f(z),z_1 )=lim_(z→z_1 ) (((z−z_1 ))/((z−z_1 )(z−z_2 )))=  (1/(z_1 −z_2 ))=(1/(2i(√2)))=((−i(√2))/4).  ∫_0 ^∞ (dx/(x^4 +2x^2 +3))=2πi×(((−i(√2))/4))=((π(√2))/2)

$$\mathrm{Consider}\:\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{1}}{\mathrm{z}^{\mathrm{4}} +\mathrm{2z}^{\mathrm{2}} +\mathrm{3}} \\ $$$$\mathrm{z}^{\mathrm{4}} +\mathrm{2z}^{\mathrm{2}} +\mathrm{3}=\mathrm{0}\Leftrightarrow\mathrm{z}=−\mathrm{1}\pm\mathrm{i}\sqrt{\mathrm{2}}\:.\mathrm{Hence} \\ $$$$\mathrm{z}_{\mathrm{1}} =−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{2}}\:\mathrm{and}\:\mathrm{z}_{\mathrm{2}} =−\mathrm{1}−\mathrm{i}\sqrt{\mathrm{2}}\:\mathrm{are}\:\mathrm{poles} \\ $$$$\mathrm{of}\:\mathrm{degree}\:\mathrm{1}\:\mathrm{of}\:\mathrm{the}\:\mathrm{finction}\:\mathrm{f}\left(\mathrm{z}\right) \\ $$$$\mathrm{Res}\left(\mathrm{f}\left(\mathrm{z}\right),\mathrm{z}_{\mathrm{1}} \right)=\underset{\mathrm{z}\rightarrow\mathrm{z}_{\mathrm{1}} } {\mathrm{lim}}\frac{\left(\mathrm{z}−\mathrm{z}_{\mathrm{1}} \right)}{\left(\mathrm{z}−\mathrm{z}_{\mathrm{1}} \right)\left(\mathrm{z}−\mathrm{z}_{\mathrm{2}} \right)}= \\ $$$$\frac{\mathrm{1}}{\mathrm{z}_{\mathrm{1}} −\mathrm{z}_{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2i}\sqrt{\mathrm{2}}}=\frac{−\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{4}}. \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{4}} +\mathrm{2x}^{\mathrm{2}} +\mathrm{3}}=\mathrm{2}\pi\mathrm{i}×\left(\frac{−\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{4}}\right)=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com