Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138131 by mathmax by abdo last updated on 10/Apr/21

calculate ∫_0 ^∞    (dx/((2x+1)(x^2 −x+3)^2 ))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}+\mathrm{3}\right)^{\mathrm{2}} } \\ $$

Answered by MJS_new last updated on 10/Apr/21

∫(dx/((2x+1)(x^2 −x+3)^2 ))=       [Ostrogradski]  =((4x+9)/(165(x^2 −x+3)))+(8/(165))∫((x+6)/((2x+1)(x^2 −x+3)))dx=  =((4x+9)/(165(x^2 −x+3)))+((16)/(225))∫(dx/(2x+1))−(8/(2475))∫((11x−24)/(x^2 −x+3))dx=  =((4x+9)/(165(x^2 −x+3)))+(8/(225))ln ∣2x+1∣ −(4/(225))∫((2x−1)/(x^2 −x+3))dx+((148)/(2475))∫(dx/(x^2 −x+3))=  =((4x+9)/(165(x^2 −x+3)))+(8/(225))ln ∣2x+1∣ −(4/(225))ln (x^2 −x+3) +((296(√(11)))/(27225))arctan ((2x−1)/( (√(11)))) +C  answer is −(1/(55))+(4/(225))ln 12 +((148(√(11)))/(27225))π+((296(√(11)))/(27225))arctan ((√(11))/(11))

$$\int\frac{{dx}}{\left(\mathrm{2}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}\right] \\ $$$$=\frac{\mathrm{4}{x}+\mathrm{9}}{\mathrm{165}\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)}+\frac{\mathrm{8}}{\mathrm{165}}\int\frac{{x}+\mathrm{6}}{\left(\mathrm{2}{x}+\mathrm{1}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)}{dx}= \\ $$$$=\frac{\mathrm{4}{x}+\mathrm{9}}{\mathrm{165}\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)}+\frac{\mathrm{16}}{\mathrm{225}}\int\frac{{dx}}{\mathrm{2}{x}+\mathrm{1}}−\frac{\mathrm{8}}{\mathrm{2475}}\int\frac{\mathrm{11}{x}−\mathrm{24}}{{x}^{\mathrm{2}} −{x}+\mathrm{3}}{dx}= \\ $$$$=\frac{\mathrm{4}{x}+\mathrm{9}}{\mathrm{165}\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)}+\frac{\mathrm{8}}{\mathrm{225}}\mathrm{ln}\:\mid\mathrm{2}{x}+\mathrm{1}\mid\:−\frac{\mathrm{4}}{\mathrm{225}}\int\frac{\mathrm{2}{x}−\mathrm{1}}{{x}^{\mathrm{2}} −{x}+\mathrm{3}}{dx}+\frac{\mathrm{148}}{\mathrm{2475}}\int\frac{{dx}}{{x}^{\mathrm{2}} −{x}+\mathrm{3}}= \\ $$$$=\frac{\mathrm{4}{x}+\mathrm{9}}{\mathrm{165}\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)}+\frac{\mathrm{8}}{\mathrm{225}}\mathrm{ln}\:\mid\mathrm{2}{x}+\mathrm{1}\mid\:−\frac{\mathrm{4}}{\mathrm{225}}\mathrm{ln}\:\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)\:+\frac{\mathrm{296}\sqrt{\mathrm{11}}}{\mathrm{27225}}\mathrm{arctan}\:\frac{\mathrm{2}{x}−\mathrm{1}}{\:\sqrt{\mathrm{11}}}\:+{C} \\ $$$$\mathrm{answer}\:\mathrm{is}\:−\frac{\mathrm{1}}{\mathrm{55}}+\frac{\mathrm{4}}{\mathrm{225}}\mathrm{ln}\:\mathrm{12}\:+\frac{\mathrm{148}\sqrt{\mathrm{11}}}{\mathrm{27225}}\pi+\frac{\mathrm{296}\sqrt{\mathrm{11}}}{\mathrm{27225}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{11}}}{\mathrm{11}} \\ $$

Commented by MJS_new last updated on 10/Apr/21

you are welcome! greetings from one of the  first warm spring nights in Vienna/Austria

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}!\:\mathrm{greetings}\:\mathrm{from}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{first}\:\mathrm{warm}\:\mathrm{spring}\:\mathrm{nights}\:\mathrm{in}\:\mathrm{Vienna}/\mathrm{Austria} \\ $$

Commented by mathmax by abdo last updated on 10/Apr/21

thank you sir.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com