Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35224 by abdo mathsup 649 cc last updated on 16/May/18

calculate  ∫_0 ^(2π)     ((1+2cost)/(5+4cost))dt

$${calculate}\:\:\int_{\mathrm{0}} ^{\mathrm{2}\pi} \:\:\:\:\frac{\mathrm{1}+\mathrm{2}{cost}}{\mathrm{5}+\mathrm{4}{cost}}{dt} \\ $$

Answered by MJS last updated on 17/May/18

∫((1+2cos t)/(5+4cos t))dt=             [((Weierstrass again:)),((u=tan (t/2) → dt=((2du)/(1+u^2 )); t=2arctan u)),((cos t=((1−u^2 )/(1+u^2 )); (sin t=((2u)/(1+u^2 ))))) ]  =−2∫((u^2 −3)/((u^2 +1)(u^2 +9)))du=  =−2∫(−(1/(2(u^2 +1)))+(3/(2(u^2 +9))))du=  =∫(du/(u^2 +1))−3∫(du/(u^2 +9))=            [v=(u/3) → du=3dv]  =arctan u−3∫(3/(9v^2 +9))dv=  =arctan u−∫(dv/(v^2 +1))=  =arctan u−arctan v=  =arctan u−arctan (u/3)=  =arctan(tan (t/2))−arctan ((tan (t/2))/3)=  =(t/2)−arctan((1/3)tan (t/2))    ∫_0 ^(2π) ((1+2cos t)/(5+4cos t))dt=π

$$\int\frac{\mathrm{1}+\mathrm{2cos}\:{t}}{\mathrm{5}+\mathrm{4cos}\:{t}}{dt}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\begin{bmatrix}{\mathrm{Weierstrass}\:\mathrm{again}:}\\{{u}=\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\:\rightarrow\:{dt}=\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} };\:{t}=\mathrm{2arctan}\:{u}}\\{\mathrm{cos}\:{t}=\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} };\:\left(\mathrm{sin}\:{t}=\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }\right)}\end{bmatrix} \\ $$$$=−\mathrm{2}\int\frac{{u}^{\mathrm{2}} −\mathrm{3}}{\left({u}^{\mathrm{2}} +\mathrm{1}\right)\left({u}^{\mathrm{2}} +\mathrm{9}\right)}{du}= \\ $$$$=−\mathrm{2}\int\left(−\frac{\mathrm{1}}{\mathrm{2}\left({u}^{\mathrm{2}} +\mathrm{1}\right)}+\frac{\mathrm{3}}{\mathrm{2}\left({u}^{\mathrm{2}} +\mathrm{9}\right)}\right){du}= \\ $$$$=\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}}−\mathrm{3}\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{9}}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{v}=\frac{{u}}{\mathrm{3}}\:\rightarrow\:{du}=\mathrm{3}{dv}\right] \\ $$$$=\mathrm{arctan}\:{u}−\mathrm{3}\int\frac{\mathrm{3}}{\mathrm{9}{v}^{\mathrm{2}} +\mathrm{9}}{dv}= \\ $$$$=\mathrm{arctan}\:{u}−\int\frac{{dv}}{{v}^{\mathrm{2}} +\mathrm{1}}= \\ $$$$=\mathrm{arctan}\:{u}−\mathrm{arctan}\:{v}= \\ $$$$=\mathrm{arctan}\:{u}−\mathrm{arctan}\:\frac{{u}}{\mathrm{3}}= \\ $$$$=\mathrm{arctan}\left(\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\right)−\mathrm{arctan}\:\frac{\mathrm{tan}\:\frac{{t}}{\mathrm{2}}}{\mathrm{3}}= \\ $$$$=\frac{{t}}{\mathrm{2}}−\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}\:\frac{{t}}{\mathrm{2}}\right) \\ $$$$ \\ $$$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{\mathrm{1}+\mathrm{2cos}\:{t}}{\mathrm{5}+\mathrm{4cos}\:{t}}{dt}=\pi \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com