Question Number 64745 by mathmax by abdo last updated on 21/Jul/19 | ||
$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left({lnx}\right)}{{lnx}}{dx} \\ $$ | ||
Commented by mathmax by abdo last updated on 21/Jul/19 | ||
$${let}\:\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{sin}\left({lnx}\right)}{{lnx}}{dx}\:\:{changement}\:{lnx}\:=−{t}\:{give}\:{x}={e}^{−{t}} \\ $$$${A}\:=−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left(−{t}\right)}{−{t}}\:\left(−{e}^{−{t}} \right){dt}\:=\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{sint}}{{t}}\:{e}^{−{t}} \:{dt}\:\:{let}\:{consider} \\ $$$${the}\:{parametric}\:{function}\:\:\varphi\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sint}}{{t}}\:{e}^{−{xt}} {dt}\:{with}\:{x}\geqslant\mathrm{0} \\ $$$${we}\:{have}\:\varphi^{'} \left({x}\right)\:=−\int_{\mathrm{0}} ^{\infty} \:\:{sint}\:{e}^{−{xt}} {dt}\:\:=−{Im}\left(\int_{\mathrm{0}} ^{\infty} \:{e}^{{it}−{xt}} {dt}\right) \\ $$$$\int_{\mathrm{0}} ^{\infty} \:{e}^{\left(−{x}+{i}\right){t}} {dt}\:=\left[\frac{\mathrm{1}}{−{x}+{i}}\:{e}^{\left(−{x}+{i}\right){t}} \right]_{\mathrm{0}} ^{+\infty} \:=−\frac{\mathrm{1}}{−{x}+{i}}\:=\frac{\mathrm{1}}{{x}−{i}} \\ $$$$=\frac{{x}+{i}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow\varphi^{'} \left({x}\right)=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow\varphi\left({x}\right)\:=−{arctan}\left({x}\right)+{c} \\ $$$$\varphi\left(\mathrm{0}\right)\:=\frac{\pi}{\mathrm{2}}\:={c}\:\Rightarrow\varphi\left({x}\right)\:=\frac{\pi}{\mathrm{2}}\:−{arctan}\left({x}\right)\:\:{and} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{sint}}{{t}}\:{e}^{−{t}} {dt}\:=\varphi\left(\mathrm{1}\right)\:=\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{4}}\:=\frac{\pi}{\mathrm{4}}\:. \\ $$ | ||