Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 181747 by SANOGO last updated on 29/Nov/22

calcul la somme  Σ_(n=2) ^(+oo) (x/((n^2 −1)^2 ))

$${calcul}\:{la}\:{somme} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{+{oo}} {\sum}}\frac{{x}}{\left({n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Answered by Frix last updated on 01/Dec/22

Σ_(n=2) ^∞  (x/((n^2 −1)^2 )) =xΣ_(n=2) ^∞  (1/((n^2 −1))) =  =xΣ_(n=2) ^∞  ((1/(4(n−1)^2 ))+(1/(4(n+1)^2 ))−(1/(2(n^2 −1)))) =  =x((π^2 /(24))+(π^2 /(24))−(5/(16))−lim_(k→∞) (((k−1)(3k+2))/(8k(k+1))))=  =x((π^2 /(12))−((11)/(16)))

$$\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{{x}}{\left({n}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:={x}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left({n}^{\mathrm{2}} −\mathrm{1}\right)}\:= \\ $$$$={x}\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{1}}{\mathrm{4}\left({n}−\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}\left({n}+\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}\left({n}^{\mathrm{2}} −\mathrm{1}\right)}\right)\:= \\ $$$$={x}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{24}}+\frac{\pi^{\mathrm{2}} }{\mathrm{24}}−\frac{\mathrm{5}}{\mathrm{16}}−\underset{{k}\rightarrow\infty} {\mathrm{lim}}\frac{\left({k}−\mathrm{1}\right)\left(\mathrm{3}{k}+\mathrm{2}\right)}{\mathrm{8}{k}\left({k}+\mathrm{1}\right)}\right)= \\ $$$$={x}\left(\frac{\pi^{\mathrm{2}} }{\mathrm{12}}−\frac{\mathrm{11}}{\mathrm{16}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com