Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 205775 by SANOGO last updated on 30/Mar/24

calcu/    limit/n→+oo    ∫_0 ^(+oo) arctan((x/n))e^(−x) dx

$${calcu}/\:\:\:\:{limit}/{n}\rightarrow+{oo} \\ $$$$\:\:\int_{\mathrm{0}} ^{+{oo}} {arctan}\left(\frac{{x}}{{n}}\right){e}^{−{x}} {dx} \\ $$

Answered by Berbere last updated on 30/Mar/24

U_n (x)=tan^(−1) ((x/n))e^(−x) ≤(π/2)e^(−x) ;∀x∈R_+   x→(π/2)e^(−x) ;is Riemann integrabl over [0,∞[  ∫_0 ^∞ tan^(−1) ((x/n))e^(−x) dx≤∫_0 ^∞ (π/2)e^(−x) =(π/2)  domiate cv[Theorem⇒  lim_(n→∞) ∫_0 ^∞ tan^(−1) ((x/n))e^(−x) dx=∫_0 ^∞ lim_(n→∞) tan^(−1) ((x/n))e^(−x) dx=0  or using 0≤tan^(−1) (x)≤x  tan^(−1) (x)=∫_0 ^x (dt/(1+t^2 ))≤∫_0 ^x dt=x  ⇒0≤tan^(−1) ((x/n))e^(−x) ≤(x/n)e^(−x)   0≤∫_0 ^∞ tan^(−1) ((x/n))e^(−x) ≤(1/n)∫_0 ^∞ xe^(−x) dx=(1/n)Γ(2)_(→0)   lim_(n→∞) ∫_0 ^∞ tan^(−1) ((x/n))e^(−x) dx=0

$${U}_{{n}} \left({x}\right)=\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}}{{n}}\right){e}^{−{x}} \leqslant\frac{\pi}{\mathrm{2}}{e}^{−{x}} ;\forall{x}\in\mathbb{R}_{+} \\ $$$${x}\rightarrow\frac{\pi}{\mathrm{2}}{e}^{−{x}} ;{is}\:{Riemann}\:{integrabl}\:{over}\:\left[\mathrm{0},\infty\left[\right.\right. \\ $$$$\int_{\mathrm{0}} ^{\infty} \mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}}{{n}}\right){e}^{−{x}} {dx}\leqslant\int_{\mathrm{0}} ^{\infty} \frac{\pi}{\mathrm{2}}{e}^{−{x}} =\frac{\pi}{\mathrm{2}} \\ $$$${domiate}\:{cv}\left[{Theorem}\Rightarrow\right. \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\infty} \mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}}{{n}}\right){e}^{−{x}} {dx}=\int_{\mathrm{0}} ^{\infty} \underset{{n}\rightarrow\infty} {\mathrm{lim}tan}^{−\mathrm{1}} \left(\frac{{x}}{{n}}\right){e}^{−{x}} {dx}=\mathrm{0} \\ $$$${or}\:{using}\:\mathrm{0}\leqslant\mathrm{tan}^{−\mathrm{1}} \left({x}\right)\leqslant{x} \\ $$$$\mathrm{tan}^{−\mathrm{1}} \left({x}\right)=\int_{\mathrm{0}} ^{{x}} \frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\leqslant\int_{\mathrm{0}} ^{{x}} {dt}={x} \\ $$$$\Rightarrow\mathrm{0}\leqslant\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}}{{n}}\right){e}^{−{x}} \leqslant\frac{{x}}{{n}}{e}^{−{x}} \\ $$$$\mathrm{0}\leqslant\int_{\mathrm{0}} ^{\infty} \mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}}{{n}}\right){e}^{−{x}} \leqslant\frac{\mathrm{1}}{{n}}\int_{\mathrm{0}} ^{\infty} {xe}^{−{x}} {dx}=\frac{\mathrm{1}}{{n}}\Gamma\left(\mathrm{2}\right)_{\rightarrow\mathrm{0}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{\infty} \mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}}{{n}}\right){e}^{−{x}} {dx}=\mathrm{0} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com