Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 139371 by mohammad17 last updated on 26/Apr/21

by use Gamma function prove     (1) ∫_0 ^( (π/8)) cos^3 4xdx=(1/6)    (2) ∫_0 ^( π) sin^6 ((x/2))cos^8 ((x/2))dx=((5π)/2^(11) )

$${by}\:{use}\:{Gamma}\:{function}\:{prove}\: \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{8}}} {cos}^{\mathrm{3}} \mathrm{4}{xdx}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\:\pi} {sin}^{\mathrm{6}} \left(\frac{{x}}{\mathrm{2}}\right){cos}^{\mathrm{8}} \left(\frac{{x}}{\mathrm{2}}\right){dx}=\frac{\mathrm{5}\pi}{\mathrm{2}^{\mathrm{11}} } \\ $$

Answered by Dwaipayan Shikari last updated on 26/Apr/21

(x/2)=u  ⇒2∫_0 ^(π/2) sin^6 (u)cos^8 (u)du=((Γ((7/2))Γ((9/2)))/(Γ(8)))=(((5/2).(3/2).(3/2).(5/2).(7/2).(1/2).(1/2)π)/(7!))  =(π/2^7 ).((5.5.3.3)/(6!))=(π/2^8 ).((3.5)/(4!))=((5π)/2^(11) )

$$\frac{{x}}{\mathrm{2}}={u} \\ $$$$\Rightarrow\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{6}} \left({u}\right){cos}^{\mathrm{8}} \left({u}\right){du}=\frac{\Gamma\left(\frac{\mathrm{7}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{8}\right)}=\frac{\frac{\mathrm{5}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{2}}.\frac{\mathrm{3}}{\mathrm{2}}.\frac{\mathrm{5}}{\mathrm{2}}.\frac{\mathrm{7}}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{2}}\pi}{\mathrm{7}!} \\ $$$$=\frac{\pi}{\mathrm{2}^{\mathrm{7}} }.\frac{\mathrm{5}.\mathrm{5}.\mathrm{3}.\mathrm{3}}{\mathrm{6}!}=\frac{\pi}{\mathrm{2}^{\mathrm{8}} }.\frac{\mathrm{3}.\mathrm{5}}{\mathrm{4}!}=\frac{\mathrm{5}\pi}{\mathrm{2}^{\mathrm{11}} } \\ $$

Commented by mohammad17 last updated on 26/Apr/21

thank you sir and number (1) can you solve

$${thank}\:{you}\:{sir}\:{and}\:{number}\:\left(\mathrm{1}\right)\:{can}\:{you}\:{solve} \\ $$

Answered by Dwaipayan Shikari last updated on 26/Apr/21

4x=u  ⇒(1/4)∫_0 ^(π/2) cos^3 (u)du=(1/4).((Γ(2)Γ((1/2)))/(2Γ((5/2))))=(1/4).((√π)/((3(√π))/4)).(1/2)=(1/6)

$$\mathrm{4}{x}={u} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{3}} \left({u}\right){du}=\frac{\mathrm{1}}{\mathrm{4}}.\frac{\Gamma\left(\mathrm{2}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\mathrm{5}}{\mathrm{2}}\right)}=\frac{\mathrm{1}}{\mathrm{4}}.\frac{\sqrt{\pi}}{\frac{\mathrm{3}\sqrt{\pi}}{\mathrm{4}}}.\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$

Commented by mohammad17 last updated on 26/Apr/21

sir can you clear this steb how get    Γ(2) and Γ((1/2)) from cos^3 (u)

$${sir}\:{can}\:{you}\:{clear}\:{this}\:{steb}\:{how}\:{get} \\ $$$$ \\ $$$$\Gamma\left(\mathrm{2}\right)\:{and}\:\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:{from}\:{cos}^{\mathrm{3}} \left({u}\right) \\ $$

Commented by mohammad17 last updated on 26/Apr/21

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by Dwaipayan Shikari last updated on 26/Apr/21

∫_0 ^(π/2) cos^(2n−1) x sin^(2α−1) x dx=((Γ(n)Γ(α))/(2Γ(n+α)))  ∫_0 ^(π/2) cos^3 x dx=∫_0 ^(π/2) cos^(2.2−1) x sin^(2((1/2))−1) xdx=((Γ(2)Γ((1/2)))/(2Γ(2+(1/2))))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}{n}−\mathrm{1}} {x}\:{sin}^{\mathrm{2}\alpha−\mathrm{1}} {x}\:{dx}=\frac{\Gamma\left({n}\right)\Gamma\left(\alpha\right)}{\mathrm{2}\Gamma\left({n}+\alpha\right)} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{3}} {x}\:{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{2}.\mathrm{2}−\mathrm{1}} {x}\:{sin}^{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} {xdx}=\frac{\Gamma\left(\mathrm{2}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\mathrm{2}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$

Answered by Ar Brandon last updated on 26/Apr/21

I=∫_0 ^(π/8) cos^3 4xdx , u=4x     =(1/4)∫_0 ^(π/2) cos^3 udu=(1/8)β(2,(1/2))     =(1/8)∙((Γ(2)Γ((1/2)))/(Γ((5/2))))=(1/8)∙((√π)/((3/2)∙(1/2)∙(√π)))=(1/6)    J=∫_0 ^π sin^6 ((x/2))cos^8 ((x/2))dx , x=2v      =2∫_0 ^(π/2) sin^6 vcos^8 vdv=β((7/2),(9/2))      =((Γ((7/2))Γ((9/2)))/(Γ(8)))=(1/(7!))∙((5/2)∙(3/2)∙((√π)/2))^2 ∙(7/2)      =((225π)/(720×2^7 ))=((5π)/(2048))=((5π)/2^(11) )

$$\mathcal{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{8}}} \mathrm{cos}^{\mathrm{3}} \mathrm{4xdx}\:,\:\mathrm{u}=\mathrm{4x} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{3}} \mathrm{udu}=\frac{\mathrm{1}}{\mathrm{8}}\beta\left(\mathrm{2},\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{8}}\centerdot\frac{\Gamma\left(\mathrm{2}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{5}}{\mathrm{2}}\right)}=\frac{\mathrm{1}}{\mathrm{8}}\centerdot\frac{\sqrt{\pi}}{\frac{\mathrm{3}}{\mathrm{2}}\centerdot\frac{\mathrm{1}}{\mathrm{2}}\centerdot\sqrt{\pi}}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$ \\ $$$$\mathcal{J}=\int_{\mathrm{0}} ^{\pi} \mathrm{sin}^{\mathrm{6}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}^{\mathrm{8}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{dx}\:,\:\mathrm{x}=\mathrm{2v} \\ $$$$\:\:\:\:=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{6}} \mathrm{vcos}^{\mathrm{8}} \mathrm{vdv}=\beta\left(\frac{\mathrm{7}}{\mathrm{2}},\frac{\mathrm{9}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:=\frac{\Gamma\left(\frac{\mathrm{7}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{9}}{\mathrm{2}}\right)}{\Gamma\left(\mathrm{8}\right)}=\frac{\mathrm{1}}{\mathrm{7}!}\centerdot\left(\frac{\mathrm{5}}{\mathrm{2}}\centerdot\frac{\mathrm{3}}{\mathrm{2}}\centerdot\frac{\sqrt{\pi}}{\mathrm{2}}\right)^{\mathrm{2}} \centerdot\frac{\mathrm{7}}{\mathrm{2}} \\ $$$$\:\:\:\:=\frac{\mathrm{225}\pi}{\mathrm{720}×\mathrm{2}^{\mathrm{7}} }=\frac{\mathrm{5}\pi}{\mathrm{2048}}=\frac{\mathrm{5}\pi}{\mathrm{2}^{\mathrm{11}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com