Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 106958 by bemath last updated on 08/Aug/20

   @bemath@  (1) Given  { ((x=sin α+sin β)),((y=cos α+cos β)) :}  maximum value of x^2 +y^2  when α=...  (2) find solution set the equation  sin^4 x + sin^4 (x+(π/4))=(1/4) where x ∈ [0,2π]

$$\:\:\:@{bemath}@ \\ $$$$\left(\mathrm{1}\right)\:{Given}\:\begin{cases}{{x}=\mathrm{sin}\:\alpha+\mathrm{sin}\:\beta}\\{{y}=\mathrm{cos}\:\alpha+\mathrm{cos}\:\beta}\end{cases} \\ $$$${maximum}\:{value}\:{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{when}\:\alpha=... \\ $$$$\left(\mathrm{2}\right)\:{find}\:{solution}\:{set}\:{the}\:{equation} \\ $$$$\mathrm{sin}\:^{\mathrm{4}} {x}\:+\:\mathrm{sin}\:^{\mathrm{4}} \left({x}+\frac{\pi}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\:{where}\:{x}\:\in\:\left[\mathrm{0},\mathrm{2}\pi\right]\: \\ $$

Answered by mr W last updated on 08/Aug/20

(1)  x^2 +y^2 =sin^2  α+sin^2  β+2 sin α sin β+  cos^2  α+cos^2  β+2 cos α cos β  =2+2 cos (α−β)  ⇒(x^2 +y^2 )_(max) =2+2=4  ⇒(x^2 +y^2 )_(min) =2−2=0

$$\left(\mathrm{1}\right) \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{sin}^{\mathrm{2}} \:\alpha+\mathrm{sin}^{\mathrm{2}} \:\beta+\mathrm{2}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta+ \\ $$$$\mathrm{cos}^{\mathrm{2}} \:\alpha+\mathrm{cos}^{\mathrm{2}} \:\beta+\mathrm{2}\:\mathrm{cos}\:\alpha\:\mathrm{cos}\:\beta \\ $$$$=\mathrm{2}+\mathrm{2}\:\mathrm{cos}\:\left(\alpha−\beta\right) \\ $$$$\Rightarrow\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)_{{max}} =\mathrm{2}+\mathrm{2}=\mathrm{4} \\ $$$$\Rightarrow\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)_{{min}} =\mathrm{2}−\mathrm{2}=\mathrm{0} \\ $$

Commented by bemath last updated on 08/Aug/20

thank you mr W

$${thank}\:{you}\:{mr}\:\mathcal{W} \\ $$

Commented by bemath last updated on 08/Aug/20

(x^2 +y^2 )_(max)  where cos (α−β)=1  →cos (α−β)= cos 0°  →α−β=0° +k.2π ,⇒α=β+k.2π

$$\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)_{{max}} \:{where}\:\mathrm{cos}\:\left(\alpha−\beta\right)=\mathrm{1} \\ $$$$\rightarrow\mathrm{cos}\:\left(\alpha−\beta\right)=\:\mathrm{cos}\:\mathrm{0}° \\ $$$$\rightarrow\alpha−\beta=\mathrm{0}°\:+{k}.\mathrm{2}\pi\:,\Rightarrow\alpha=\beta+{k}.\mathrm{2}\pi \\ $$

Answered by mr W last updated on 08/Aug/20

(2)  sin^4  x+(1/4)(sin x+cos x)^4 =(1/4)  sin^4  x+(1/4)(1+2sin xcos x)^2 =(1/4)  sin^4  x+(1/4)(1+4 sin xcos x+4 sin^2  x cos^2  x)=(1/4)  sin^4  x+(1/4)+sin xcos x+ sin^2  x cos^2  x=(1/4)  sin^2  x+sin xcos x=0  sin x(sin x+cos x)=0  (√2)sin x sin (x+(π/4))=0  ⇒sin x=0 ⇒x=kπ  ⇒sin (x+(π/4))=0 ⇒x=kπ−(π/4)

$$\left(\mathrm{2}\right) \\ $$$$\mathrm{sin}^{\mathrm{4}} \:{x}+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)^{\mathrm{4}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{sin}^{\mathrm{4}} \:{x}+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{2sin}\:{x}\mathrm{cos}\:{x}\right)^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{sin}^{\mathrm{4}} \:{x}+\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{4}\:\mathrm{sin}\:{x}\mathrm{cos}\:{x}+\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}\right)=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{sin}^{\mathrm{4}} \:{x}+\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{sin}\:{x}\mathrm{cos}\:{x}+\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{cos}^{\mathrm{2}} \:{x}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{sin}^{\mathrm{2}} \:{x}+\mathrm{sin}\:{x}\mathrm{cos}\:{x}=\mathrm{0} \\ $$$$\mathrm{sin}\:{x}\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right)=\mathrm{0} \\ $$$$\sqrt{\mathrm{2}}\mathrm{sin}\:{x}\:\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:{x}=\mathrm{0}\:\Rightarrow{x}={k}\pi \\ $$$$\Rightarrow\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{0}\:\Rightarrow{x}={k}\pi−\frac{\pi}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com