Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 94285 by mathmax by abdo last updated on 17/May/20

approximate ∫_0 ^(π/2)  (x/(sinx))dx by simpsom method

$${approximate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{x}}{{sinx}}{dx}\:{by}\:{simpsom}\:{method} \\ $$

Commented by PRITHWISH SEN 2 last updated on 18/May/20

taking 7 ordinates at x=0,(π/(12)),(π/6),(π/4),(π/3),((5π)/(12)),(π/2)  here  h=(1/6)          x            f(x)= (x/(sin x))       0   ∽             1  =y_0    (considering the limiting value)       (π/(12))                  1.011515 = y_1        (π/6)                   1.047197 = y_2        (π/4)                    1.110720 = y_3         (π/3)                   1.209199 = y_4         ((5π)/(12))                   1.355173 = y_5          (π/2)                   1.570796 = y_6   applying Simpson′s  one third rule  I_(1/3)     = (h/3)[(y_0 +y_6 )+4(y_1 +y_3 +y_5 )+2(y_2 +y_4 )]                = (1/(18)){2.570796+13.909632+4.512792}           = 1.16629  please check.

$$\mathrm{taking}\:\mathrm{7}\:\mathrm{ordinates}\:\mathrm{at}\:\boldsymbol{\mathrm{x}}=\mathrm{0},\frac{\pi}{\mathrm{12}},\frac{\pi}{\mathrm{6}},\frac{\pi}{\mathrm{4}},\frac{\pi}{\mathrm{3}},\frac{\mathrm{5}\pi}{\mathrm{12}},\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{here}\:\:\mathrm{h}=\frac{\mathrm{1}}{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{x}}\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{sin}\:\boldsymbol{\mathrm{x}}} \\ $$$$\:\:\:\:\:\mathrm{0}\:\:\:\backsim\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}\:\:=\mathrm{y}_{\mathrm{0}} \:\:\:\left(\boldsymbol{\mathrm{considering}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{limiting}}\:\boldsymbol{\mathrm{value}}\right) \\ $$$$\:\:\:\:\:\frac{\pi}{\mathrm{12}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}.\mathrm{011515}\:=\:\mathrm{y}_{\mathrm{1}} \\ $$$$\:\:\:\:\:\frac{\pi}{\mathrm{6}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}.\mathrm{047197}\:=\:\mathrm{y}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\frac{\pi}{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}.\mathrm{110720}\:=\:\mathrm{y}_{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\frac{\pi}{\mathrm{3}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}.\mathrm{209199}\:=\:\mathrm{y}_{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\frac{\mathrm{5}\pi}{\mathrm{12}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}.\mathrm{355173}\:=\:\mathrm{y}_{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\frac{\pi}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}.\mathrm{570796}\:=\:\mathrm{y}_{\mathrm{6}} \\ $$$$\mathrm{applying}\:\mathrm{Simpson}'\mathrm{s}\:\:\mathrm{one}\:\mathrm{third}\:\mathrm{rule} \\ $$$$\mathrm{I}_{\frac{\mathrm{1}}{\mathrm{3}}} \:\:\:\:=\:\frac{\mathrm{h}}{\mathrm{3}}\left[\left(\mathrm{y}_{\mathrm{0}} +\mathrm{y}_{\mathrm{6}} \right)+\mathrm{4}\left(\mathrm{y}_{\mathrm{1}} +\mathrm{y}_{\mathrm{3}} +\mathrm{y}_{\mathrm{5}} \right)+\mathrm{2}\left(\mathrm{y}_{\mathrm{2}} +\mathrm{y}_{\mathrm{4}} \right)\right]\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{18}}\left\{\mathrm{2}.\mathrm{570796}+\mathrm{13}.\mathrm{909632}+\mathrm{4}.\mathrm{512792}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\mathrm{1}.\mathrm{16629}\:\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}}. \\ $$

Commented by mathmax by abdo last updated on 20/May/20

thank you sir.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by PRITHWISH SEN 2 last updated on 20/May/20

you are welcome

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome} \\ $$

Answered by mathmax by abdo last updated on 20/May/20

we have f(x) =(x/(sinx)) ⇒∫_a ^b f(x)∼((b−a)/6){ f(a)+4f(((a+b)/2))+f(b)} ⇒  ⇒∫_0 ^(π/2)  (x/(sinx))dx ∼(π/6){ f(0)+4f((π/4)) +f((π/2))} ⇒  ∫_0 ^(π/2)  (x/(sinx))dx ∼(π/6)(1 +4 ×(π/(4×(1/(√2)))) +(π/2))    ( 1 =lim_(x→0)  (x/(sinx)))  ∫_0 ^(π/2)  (x/(sinx))dx ∼ (π/6)(1+π(√2) +(π/2))

$$\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{x}}{\mathrm{sinx}}\:\Rightarrow\int_{\mathrm{a}} ^{\mathrm{b}} \mathrm{f}\left(\mathrm{x}\right)\sim\frac{\mathrm{b}−\mathrm{a}}{\mathrm{6}}\left\{\:\mathrm{f}\left(\mathrm{a}\right)+\mathrm{4f}\left(\frac{\mathrm{a}+\mathrm{b}}{\mathrm{2}}\right)+\mathrm{f}\left(\mathrm{b}\right)\right\}\:\Rightarrow \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{x}}{\mathrm{sinx}}\mathrm{dx}\:\sim\frac{\pi}{\mathrm{6}}\left\{\:\mathrm{f}\left(\mathrm{0}\right)+\mathrm{4f}\left(\frac{\pi}{\mathrm{4}}\right)\:+\mathrm{f}\left(\frac{\pi}{\mathrm{2}}\right)\right\}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{x}}{\mathrm{sinx}}\mathrm{dx}\:\sim\frac{\pi}{\mathrm{6}}\left(\mathrm{1}\:+\mathrm{4}\:×\frac{\pi}{\mathrm{4}×\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}}\:+\frac{\pi}{\mathrm{2}}\right)\:\:\:\:\left(\:\mathrm{1}\:=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \:\frac{\mathrm{x}}{\mathrm{sinx}}\right) \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{x}}{\mathrm{sinx}}\mathrm{dx}\:\sim\:\frac{\pi}{\mathrm{6}}\left(\mathrm{1}+\pi\sqrt{\mathrm{2}}\:+\frac{\pi}{\mathrm{2}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com