Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 64871 by Rio Michael last updated on 22/Jul/19

any hint about how to prove by induction in the Sigma notion topic?  like in Σ

$${any}\:{hint}\:{about}\:{how}\:{to}\:{prove}\:{by}\:{induction}\:{in}\:{the}\:{Sigma}\:{notion}\:{topic}? \\ $$$${like}\:{in}\:\Sigma \\ $$

Commented by mathmax by abdo last updated on 22/Jul/19

you question is not clear....

$${you}\:{question}\:{is}\:{not}\:{clear}.... \\ $$

Commented by Rio Michael last updated on 22/Jul/19

help me know how to prove by mathematical induction when dealing with summation  Σ

$${help}\:{me}\:{know}\:{how}\:{to}\:{prove}\:{by}\:{mathematical}\:{induction}\:{when}\:{dealing}\:{with}\:{summation} \\ $$$$\Sigma \\ $$

Commented by mathmax by abdo last updated on 22/Jul/19

i dont understand what you want but i give some properties of  of  Σ    if we have  (x_i ) _(1≤i≤n)   and (y_i )_(i∈[0,n])  2 sequences of reals  numbers (or complex)  the sum x_1  +x_2 +....+x_k  is writen  Σ_(i=1) ^k  x_i     also we have Σ_(i=1) ^n  x_i  +^− Σ_(i=1) ^n  y_i =Σ_(i=1) ^n (x_i  +^− y_i )  Σ_(i=1) ^n  λ x_i =λ Σ_(i=1) ^n  x_i   (λ ∈R or C)  Σ_(i=1) ^n (1) =n   ,Σ_(i=0) ^n (1) =n+1 ,Σ_(i=1) ^n λ =nλ  Σ_(i=0) ^n  λ =(n+1)λ    , Σ_i  Σ_j  x_(ij) =Σ_j Σ_i x_(ij)   ....

$${i}\:{dont}\:{understand}\:{what}\:{you}\:{want}\:{but}\:{i}\:{give}\:{some}\:{properties}\:{of} \\ $$$${of}\:\:\Sigma\:\:\:\:{if}\:{we}\:{have}\:\:\left({x}_{{i}} \right)\:_{\mathrm{1}\leqslant{i}\leqslant{n}} \:\:{and}\:\left({y}_{{i}} \right)_{{i}\in\left[\mathrm{0},{n}\right]} \:\mathrm{2}\:{sequences}\:{of}\:{reals} \\ $$$${numbers}\:\left({or}\:{complex}\right)\:\:{the}\:{sum}\:{x}_{\mathrm{1}} \:+{x}_{\mathrm{2}} +....+{x}_{{k}} \:{is}\:{writen} \\ $$$$\sum_{{i}=\mathrm{1}} ^{{k}} \:{x}_{{i}} \:\:\:\:{also}\:{we}\:{have}\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{x}_{{i}} \:\overset{−} {+}\sum_{{i}=\mathrm{1}} ^{{n}} \:{y}_{{i}} =\sum_{{i}=\mathrm{1}} ^{{n}} \left({x}_{{i}} \:\overset{−} {+}{y}_{{i}} \right) \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \:\lambda\:{x}_{{i}} =\lambda\:\sum_{{i}=\mathrm{1}} ^{{n}} \:{x}_{{i}} \:\:\left(\lambda\:\in{R}\:{or}\:{C}\right) \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \left(\mathrm{1}\right)\:={n}\:\:\:,\sum_{{i}=\mathrm{0}} ^{{n}} \left(\mathrm{1}\right)\:={n}+\mathrm{1}\:,\sum_{{i}=\mathrm{1}} ^{{n}} \lambda\:={n}\lambda \\ $$$$\sum_{{i}=\mathrm{0}} ^{{n}} \:\lambda\:=\left({n}+\mathrm{1}\right)\lambda\:\:\:\:,\:\sum_{{i}} \:\sum_{{j}} \:{x}_{{ij}} =\sum_{{j}} \sum_{{i}} {x}_{{ij}} \:\:.... \\ $$$$ \\ $$

Commented by Rio Michael last updated on 22/Jul/19

well thanks for that

$${well}\:{thanks}\:{for}\:{that} \\ $$

Commented by mathmax by abdo last updated on 23/Jul/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com