Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 46809 by MJS last updated on 31/Oct/18

an early question for the new year  how many rectangular triangles with sides  a, b, c ∈N^★  exist with one side =2019

$$\mathrm{an}\:\mathrm{early}\:\mathrm{question}\:\mathrm{for}\:\mathrm{the}\:\mathrm{new}\:\mathrm{year} \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{rectangular}\:\mathrm{triangles}\:\mathrm{with}\:\mathrm{sides} \\ $$$${a},\:{b},\:{c}\:\in\mathbb{N}^{\bigstar} \:\mathrm{exist}\:\mathrm{with}\:\mathrm{one}\:\mathrm{side}\:=\mathrm{2019} \\ $$

Answered by MrW3 last updated on 02/Nov/18

a^2 +b^2 =c^2   case 1: with c=2019  a^2 +b^2 =2019^2 =3^2 ×673^2   let a=3p, b=3q  ⇒p^2 +q^2 =673^2   it has one and only one solution:  p=385, q=552  ⇒a=3×385=1155  ⇒b=3×552=1656    case 2: with a=2019  2019^2 +b^2 =c^2   ⇒c^2 −b^2 =(c−b)(c+b)=2019^2 =3^2 ×673^2 =m×n=1×4076361=3×1358787=9×452929=673×6057  c−b=m  c+b=n  ⇒b=((n−m)/2)  ⇒c=((n+m)/2)  ⇒b=((4076361−1)/2)=2038180  ⇒c=((4076361+1)/2)=2038181  or  ⇒b=((1358787−3)/2)=679392  ⇒c=((1358787+3)/2)=679395  or  ⇒b=((452929−9)/2)=226460  ⇒c=((452929+9)/2)=226469  or  ⇒b=((6057−673)/2)=2692  ⇒c=((6057+673)/2)=3365    so totally there exist 5 such triangles:  a/b/c=1155/1656/2019  a/b/c=2019/2692/3365  a/b/c=2019/226460/226469  a/b/c=2019/679392/679395  a/b/c=2019/2038180/2038181

$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$$\boldsymbol{{case}}\:\mathrm{1}:\:{with}\:{c}=\mathrm{2019} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{2019}^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} ×\mathrm{673}^{\mathrm{2}} \\ $$$${let}\:{a}=\mathrm{3}{p},\:{b}=\mathrm{3}{q} \\ $$$$\Rightarrow{p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\mathrm{673}^{\mathrm{2}} \\ $$$${it}\:{has}\:{one}\:{and}\:{only}\:{one}\:{solution}: \\ $$$${p}=\mathrm{385},\:{q}=\mathrm{552} \\ $$$$\Rightarrow{a}=\mathrm{3}×\mathrm{385}=\mathrm{1155} \\ $$$$\Rightarrow{b}=\mathrm{3}×\mathrm{552}=\mathrm{1656} \\ $$$$ \\ $$$$\boldsymbol{{case}}\:\mathrm{2}:\:{with}\:{a}=\mathrm{2019} \\ $$$$\mathrm{2019}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$$\Rightarrow{c}^{\mathrm{2}} −{b}^{\mathrm{2}} =\left({c}−{b}\right)\left({c}+{b}\right)=\mathrm{2019}^{\mathrm{2}} =\mathrm{3}^{\mathrm{2}} ×\mathrm{673}^{\mathrm{2}} ={m}×{n}=\mathrm{1}×\mathrm{4076361}=\mathrm{3}×\mathrm{1358787}=\mathrm{9}×\mathrm{452929}=\mathrm{673}×\mathrm{6057} \\ $$$${c}−{b}={m} \\ $$$${c}+{b}={n} \\ $$$$\Rightarrow{b}=\frac{{n}−{m}}{\mathrm{2}} \\ $$$$\Rightarrow{c}=\frac{{n}+{m}}{\mathrm{2}} \\ $$$$\Rightarrow{b}=\frac{\mathrm{4076361}−\mathrm{1}}{\mathrm{2}}=\mathrm{2038180} \\ $$$$\Rightarrow{c}=\frac{\mathrm{4076361}+\mathrm{1}}{\mathrm{2}}=\mathrm{2038181} \\ $$$${or} \\ $$$$\Rightarrow{b}=\frac{\mathrm{1358787}−\mathrm{3}}{\mathrm{2}}=\mathrm{679392} \\ $$$$\Rightarrow{c}=\frac{\mathrm{1358787}+\mathrm{3}}{\mathrm{2}}=\mathrm{679395} \\ $$$${or} \\ $$$$\Rightarrow{b}=\frac{\mathrm{452929}−\mathrm{9}}{\mathrm{2}}=\mathrm{226460} \\ $$$$\Rightarrow{c}=\frac{\mathrm{452929}+\mathrm{9}}{\mathrm{2}}=\mathrm{226469} \\ $$$${or} \\ $$$$\Rightarrow{b}=\frac{\mathrm{6057}−\mathrm{673}}{\mathrm{2}}=\mathrm{2692} \\ $$$$\Rightarrow{c}=\frac{\mathrm{6057}+\mathrm{673}}{\mathrm{2}}=\mathrm{3365} \\ $$$$ \\ $$$${so}\:\boldsymbol{{totally}}\:{there}\:{exist}\:\mathrm{5}\:{such}\:{triangles}: \\ $$$${a}/{b}/{c}=\mathrm{1155}/\mathrm{1656}/\mathrm{2019} \\ $$$${a}/{b}/{c}=\mathrm{2019}/\mathrm{2692}/\mathrm{3365} \\ $$$${a}/{b}/{c}=\mathrm{2019}/\mathrm{226460}/\mathrm{226469} \\ $$$${a}/{b}/{c}=\mathrm{2019}/\mathrm{679392}/\mathrm{679395} \\ $$$${a}/{b}/{c}=\mathrm{2019}/\mathrm{2038180}/\mathrm{2038181} \\ $$

Commented by MJS last updated on 02/Nov/18

you′re right, thank you!

$$\mathrm{you}'\mathrm{re}\:\mathrm{right},\:\mathrm{thank}\:\mathrm{you}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com