Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 138723 by mnjuly1970 last updated on 17/Apr/21

                   ........advanced... ... ...math......   prove that _∗^∗   ::::     𝛀=Σ_(k=0) ^∞ {(1/(16^k ))((4/(8k+1))−(2/(8k+4))−(1/(8k+5))−(1/(8k+6)))}=π           ....Bailey−Borwein formula....

$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:........{advanced}...\:...\:...{math}...... \\ $$$$\:{prove}\:{that}\:_{\ast} ^{\ast} \:\::::: \\ $$$$\:\:\:\boldsymbol{\Omega}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left\{\frac{\mathrm{1}}{\mathrm{16}^{{k}} }\left(\frac{\mathrm{4}}{\mathrm{8}{k}+\mathrm{1}}−\frac{\mathrm{2}}{\mathrm{8}{k}+\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{8}{k}+\mathrm{5}}−\frac{\mathrm{1}}{\mathrm{8}{k}+\mathrm{6}}\right)\right\}=\pi \\ $$$$\:\:\:\:\:\:\:\:\:....{Bailey}−{Borwein}\:{formula}.... \\ $$$$\:\:\: \\ $$

Commented by Dwaipayan Shikari last updated on 17/Apr/21

It is as hard as to prove  (1/π)=((2(√2))/(99^2 ))Σ_(n=0) ^∞ (((1103+26390n)(4n)!)/((n!)^4 396^n )) ;(

$${It}\:{is}\:{as}\:{hard}\:{as}\:{to}\:{prove}\:\:\frac{\mathrm{1}}{\pi}=\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{99}^{\mathrm{2}} }\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\mathrm{1103}+\mathrm{26390}{n}\right)\left(\mathrm{4}{n}\right)!}{\left({n}!\right)^{\mathrm{4}} \mathrm{396}^{{n}} }\:;\left(\right. \\ $$

Commented by mnjuly1970 last updated on 17/Apr/21

 yes you are right ...

$$\:{yes}\:{you}\:{are}\:{right}\:... \\ $$$$\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com