Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 133791 by mnjuly1970 last updated on 24/Feb/21

            ......advanced    integral....     prove  that ::           𝛗=∫_0 ^( ∞) (((1−e^(−ϕx) )/(1+e^(ϕx) )) )(dx/x) =??     ϕ: = Golden ratio...

$$\:\:\:\:\:\:\:\:\:\:\:\:......{advanced}\:\:\:\:{integral}.... \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\phi}=\int_{\mathrm{0}} ^{\:\infty} \left(\frac{\mathrm{1}−{e}^{−\varphi{x}} }{\mathrm{1}+{e}^{\varphi{x}} }\:\right)\frac{{dx}}{{x}}\:=?? \\ $$$$\:\:\:\varphi:\:=\:{Golden}\:{ratio}... \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 24/Feb/21

I(α)=∫_0 ^∞ (((1/(1+e^(ϕx) ))−((e^(−αϕx)  )/(1+e^(ϕx) )))/x)dx  I′(α)=ϕ∫_0 ^∞ (e^(−αϕx) /(1+e^(ϕx) ))dx=Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^∞ e^(−(αϕ+nϕ)x) dx  =ϕΣ_(n=1) ^∞ (((−1)^(n+1) )/(ϕ(α+n)))=((1/(1+α))−(1/(2+α))+(1/(3+α))−(1/(4+α))+...)  =(Σ_(n=0) ^∞ (1/(n+1))−(1/(2n+2+α))−Σ_(n=0) ^∞ (1/(n+1))−(1/(2n+1+α)))  I′(α)=(1/2)(ψ(1+(α/2))−ψ((1/2)+(α/2)))  I(α)=.log(Γ(1+(α/2)))−log(Γ(((1+α)/2)))+C  α=0  ⇒I(0)=−log((√π))+C⇒C=log((√π))  I(1)=log(((√π)/2))+log((√π))=log((π/2))

$${I}\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \frac{\frac{\mathrm{1}}{\mathrm{1}+{e}^{\varphi{x}} }−\frac{{e}^{−\alpha\varphi{x}} \:}{\mathrm{1}+{e}^{\varphi{x}} }}{{x}}{dx} \\ $$$${I}'\left(\alpha\right)=\varphi\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\alpha\varphi{x}} }{\mathrm{1}+{e}^{\varphi{x}} }{dx}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \int_{\mathrm{0}} ^{\infty} {e}^{−\left(\alpha\varphi+{n}\varphi\right){x}} {dx} \\ $$$$=\varphi\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\varphi\left(\alpha+{n}\right)}=\left(\frac{\mathrm{1}}{\mathrm{1}+\alpha}−\frac{\mathrm{1}}{\mathrm{2}+\alpha}+\frac{\mathrm{1}}{\mathrm{3}+\alpha}−\frac{\mathrm{1}}{\mathrm{4}+\alpha}+...\right) \\ $$$$=\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{2}+\alpha}−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}+\alpha}\right) \\ $$$${I}'\left(\alpha\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\psi\left(\mathrm{1}+\frac{\alpha}{\mathrm{2}}\right)−\psi\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\alpha}{\mathrm{2}}\right)\right) \\ $$$${I}\left(\alpha\right)=.{log}\left(\Gamma\left(\mathrm{1}+\frac{\alpha}{\mathrm{2}}\right)\right)−{log}\left(\Gamma\left(\frac{\mathrm{1}+\alpha}{\mathrm{2}}\right)\right)+{C} \\ $$$$\alpha=\mathrm{0}\:\:\Rightarrow{I}\left(\mathrm{0}\right)=−{log}\left(\sqrt{\pi}\right)+{C}\Rightarrow{C}={log}\left(\sqrt{\pi}\right) \\ $$$${I}\left(\mathrm{1}\right)={log}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right)+{log}\left(\sqrt{\pi}\right)={log}\left(\frac{\pi}{\mathrm{2}}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 24/Feb/21

Thanking you for showing my mistake . I have edited

$${Thanking}\:{you}\:{for}\:{showing}\:{my}\:{mistake}\:.\:{I}\:{have}\:{edited} \\ $$

Commented by mnjuly1970 last updated on 24/Feb/21

grateful...

$${grateful}... \\ $$

Commented by mathDivergent last updated on 24/Feb/21

Commented by mathDivergent last updated on 24/Feb/21

you have mistake in 2nd line  Here: I′(α)=∫_0 ^∞ (e^(−αϕx) /(1+e^(ϕx) ))dx=Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^∞ e^(−(αϕ+nϕ)x) dx  Since: (∂ /∂α)((((1/(1+e^(ϕx) ))−((e^(−αϕx)  )/(1+e^(ϕx) )))/x)) = ϕ (e^(−αϕx) /(1+e^(ϕx) ))

$$\mathrm{you}\:\mathrm{have}\:\mathrm{mistake}\:\mathrm{in}\:\mathrm{2nd}\:\mathrm{line} \\ $$$$\mathrm{Here}:\:{I}'\left(\alpha\right)=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\alpha\varphi{x}} }{\mathrm{1}+{e}^{\varphi{x}} }{dx}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \int_{\mathrm{0}} ^{\infty} {e}^{−\left(\alpha\varphi+{n}\varphi\right){x}} {dx} \\ $$$$\mathrm{Since}:\:\frac{\partial\:}{\partial\alpha}\left(\frac{\frac{\mathrm{1}}{\mathrm{1}+{e}^{\varphi{x}} }−\frac{{e}^{−\alpha\varphi{x}} \:}{\mathrm{1}+{e}^{\varphi{x}} }}{{x}}\right)\:=\:\varphi\:\frac{{e}^{−\alpha\varphi{x}} }{\mathrm{1}+{e}^{\varphi{x}} } \\ $$

Commented by mathDivergent last updated on 24/Feb/21

good, but I see one more mistake please check your solution  (p.s. ans is correct)

$${good},\:{but}\:{I}\:{see}\:{one}\:{more}\:{mistake}\:{please}\:{check}\:{your}\:{solution} \\ $$$$\left({p}.{s}.\:{ans}\:{is}\:{correct}\right) \\ $$

Answered by mathDivergent last updated on 24/Feb/21

    ln (π/2)

$$\:\:\:\:\mathrm{ln}\:\frac{\pi}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com