Question Number 202716 by Rasheed.Sindhi last updated on 01/Jan/24 | ||
![]() | ||
$$\overline {\:\:{abcd}\:\:}{is}\:{a}\:{four}\:{digit}\:{number} \\ $$$${such}\:{that}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\overline {\:{cd}\:} \\ $$$${and}\:\overline {\:{cd}\:}−\overline {\:{d}\:}=\overline {\:{ab}\:}. \\ $$$$\mathcal{F}{ind}\:{the}\:{number}. \\ $$ | ||
Answered by JDamian last updated on 01/Jan/24 | ||
![]() | ||
$$\overset{\_\_} {{cd}}\:−\:\overset{\_} {{d}}\:\:=\:\:\overset{\_\_} {{ab}}\:\:=\:\overset{\_\_} {{c}\mathrm{0}}\:\:\Rightarrow\:\:{b}=\mathrm{0}\:\:\:\wedge\:\:{a}={c} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\:\overset{\_\_} {{cd}}\:=\mathrm{10}{c}+{d} \\ $$$${c}^{\mathrm{2}} +\mathrm{0}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\:\mathrm{10}{c}+{d} \\ $$$$\mathrm{2}{c}^{\mathrm{2}} +{d}^{\mathrm{2}} =\mathrm{10}{c}+{d} \\ $$$${d}^{\mathrm{2}} −{d}\:=\:\mathrm{10}{c}−\mathrm{2}{c}^{\mathrm{2}} \\ $$$$\boldsymbol{{d}}\left(\boldsymbol{{d}}−\mathrm{1}\right)\:=\:\mathrm{2}\boldsymbol{{c}}\left(\mathrm{5}−\boldsymbol{{c}}\right) \\ $$$$\mathrm{2}{c}\left(\mathrm{5}−{c}\right)\geqslant\mathrm{0}\:\:\Rightarrow\:{c}\leqslant\mathrm{5} \\ $$$$ \\ $$$$\begin{array}{|c|c|c|c|c|c|c|}{{c}}&\hline{\mathrm{2}{c}\left(\mathrm{5}−{c}\right)}\\{\mathrm{0}}&\hline{\mathrm{0}}\\{\mathrm{1}}&\hline{\mathrm{8}}\\{\mathrm{2}}&\hline{\mathrm{12}}\\{\mathrm{3}}&\hline{\mathrm{12}}\\{\mathrm{4}}&\hline{\mathrm{8}}\\{\mathrm{5}}&\hline{\mathrm{0}}\\\hline\end{array}\:\:\:\:\begin{array}{|c|c|c|c|c|c|c|}{{d}}&\hline{{d}\left({d}−\mathrm{1}\right)}\\{\mathrm{1}}&\hline{\mathrm{0}}\\{\mathrm{2}}&\hline{\mathrm{2}}\\{\mathrm{3}}&\hline{\mathrm{6}}\\{\mathrm{4}}&\hline{\mathrm{12}}\\{\mathrm{5}}&\hline{\mathrm{20}}\\{\vdots}&\hline{\vdots}\\\hline\end{array} \\ $$$$ \\ $$$${d}=\mathrm{4}\:\:\wedge\:\:{c}\:\in\:\left\{\mathrm{2},\:\mathrm{3}\right\} \\ $$$$ \\ $$$$\overset{\_\_} {{cd}}\:\in\:\left\{\mathrm{24},\:\mathrm{34}\right\} \\ $$$$ \\ $$$$\overset{\_\_\_\_} {{abcd}}\:\in\:\left\{\mathrm{2024},\:\mathrm{3034}\right\} \\ $$$$ \\ $$$$\boldsymbol{{Happy}}\:\boldsymbol{{new}}\:\boldsymbol{{year}}\:\mathrm{2024}...\:{or}\:\mathrm{3034}\:{if} \\ $$$${anybody}\:{reads}\:{this}\:{in}\:\mathrm{3034}!!!\:\:{lol} \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 01/Jan/24 | ||
![]() | ||
$$\boldsymbol{\mathrm{V}}.\:\boldsymbol{\mathrm{N}}\mathrm{i}\boldsymbol{\mathrm{ce}}!....\mathcal{T}\boldsymbol{{hanks}}\:\boldsymbol{{sir}}! \\ $$$$\underset{\boldsymbol{{to}}\:\boldsymbol{{you}}\:\boldsymbol{{too}}} {\boldsymbol{{Happy}}\:\boldsymbol{{new}}\:\boldsymbol{{year}}\:\mathrm{2024}}\: \\ $$$$\boldsymbol{{In}}\:\boldsymbol{{advance}},\: \\ $$$$\left.\boldsymbol{{Happy}}\:\boldsymbol{{year}}\:\mathrm{3034}\::\right) \\ $$ | ||