Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 20293 by tammi last updated on 25/Aug/17

∫(√(((a+x)/x)dx))

$$\int\sqrt{\frac{{a}+{x}}{{x}}{dx}} \\ $$

Answered by $@ty@m last updated on 25/Aug/17

=∫((a+x)/(√(x(a+x))))dx  =∫((a+x)/(√(ax+x^2 )))dx  =(1/2)∫((2x+a+a)/(√(ax+x^2 )))dx  =(1/2)∫((2x+a)/(√(ax+x^2 )))dx+(a/2)∫(dx/(√(ax+x^2 )))  =(√(ax+x^2 ))+(a/2)∫(dx/(√(x^2 +2.(a/2)x+((a/2))^2 −((a/2))^2 )))dx  =(√(ax+x^2 ))+(a/2)∫(dx/(√((x+(a/2))^2 −((a/2))^2 )))  =(√(ax+x^2 ))+(a/2)ln∣x+(a/2)+(√(ax+x^2 ))∣+C

$$=\int\frac{{a}+{x}}{\sqrt{{x}\left({a}+{x}\right)}}{dx} \\ $$$$=\int\frac{{a}+{x}}{\sqrt{{ax}+{x}^{\mathrm{2}} }}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{x}+{a}+{a}}{\sqrt{{ax}+{x}^{\mathrm{2}} }}{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{2}{x}+{a}}{\sqrt{{ax}+{x}^{\mathrm{2}} }}{dx}+\frac{{a}}{\mathrm{2}}\int\frac{{dx}}{\sqrt{{ax}+{x}^{\mathrm{2}} }} \\ $$$$=\sqrt{{ax}+{x}^{\mathrm{2}} }+\frac{{a}}{\mathrm{2}}\int\frac{{dx}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}.\frac{{a}}{\mathrm{2}}{x}+\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} }}{dx} \\ $$$$=\sqrt{{ax}+{x}^{\mathrm{2}} }+\frac{{a}}{\mathrm{2}}\int\frac{{dx}}{\sqrt{\left({x}+\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} }} \\ $$$$=\sqrt{{ax}+{x}^{\mathrm{2}} }+\frac{{a}}{\mathrm{2}}{ln}\mid{x}+\frac{{a}}{\mathrm{2}}+\sqrt{{ax}+{x}^{\mathrm{2}} }\mid+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com