Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 214216 by MathematicalUser2357 last updated on 01/Dec/24

a_n =a_(n−1) +((x−a_(n−1) )/t)  lim_(n→∞) a_n =?

$${a}_{{n}} ={a}_{{n}−\mathrm{1}} +\frac{{x}−{a}_{{n}−\mathrm{1}} }{{t}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} =? \\ $$

Answered by mr W last updated on 01/Dec/24

a_n +((1/t)−1)a_(n−1) −(x/t)=0  let a_n =Ar^n +B  Ar^n +B+((1/t)−1)(Ar^(n−1) +B)−(x/t)=0  (r+(1/t)−1)Ar^(n−1) +(B/t)−(x/t)=0  ⇒(B/t)−(x/t)=0 ⇒B=x  ⇒r+(1/t)−1=0 ⇒r=1−(1/t)  ⇒a_n =A(1−(1/t))^n +x  if −1<1−(1/t)<1, i.e. t>(1/2),   lim_(n→∞) a_n =x  otherwise  lim_(n→∞) a_n =∞

$${a}_{{n}} +\left(\frac{\mathrm{1}}{{t}}−\mathrm{1}\right){a}_{{n}−\mathrm{1}} −\frac{{x}}{{t}}=\mathrm{0} \\ $$$${let}\:{a}_{{n}} ={Ar}^{{n}} +{B} \\ $$$${Ar}^{{n}} +{B}+\left(\frac{\mathrm{1}}{{t}}−\mathrm{1}\right)\left({Ar}^{{n}−\mathrm{1}} +{B}\right)−\frac{{x}}{{t}}=\mathrm{0} \\ $$$$\left({r}+\frac{\mathrm{1}}{{t}}−\mathrm{1}\right){Ar}^{{n}−\mathrm{1}} +\frac{{B}}{{t}}−\frac{{x}}{{t}}=\mathrm{0} \\ $$$$\Rightarrow\frac{{B}}{{t}}−\frac{{x}}{{t}}=\mathrm{0}\:\Rightarrow{B}={x} \\ $$$$\Rightarrow{r}+\frac{\mathrm{1}}{{t}}−\mathrm{1}=\mathrm{0}\:\Rightarrow{r}=\mathrm{1}−\frac{\mathrm{1}}{{t}} \\ $$$$\Rightarrow{a}_{{n}} ={A}\left(\mathrm{1}−\frac{\mathrm{1}}{{t}}\right)^{{n}} +{x} \\ $$$${if}\:−\mathrm{1}<\mathrm{1}−\frac{\mathrm{1}}{{t}}<\mathrm{1},\:{i}.{e}.\:{t}>\frac{\mathrm{1}}{\mathrm{2}},\: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} ={x} \\ $$$${otherwise} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{a}_{{n}} =\infty \\ $$

Commented by mr W last updated on 01/Dec/24

이것이 당신이 기대했던 것입니까?

Commented by issac last updated on 03/Dec/24

한국인임?

Commented by mr W last updated on 03/Dec/24

maybe

$${maybe} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com