Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 196399 by tri26112004 last updated on 24/Aug/23

a/ lim_((x,y)→(0,2))  (1+xy)^(2/(x^2 +xy))   b/ lim_((x,y)→(0,0))  (x^2 +y^2 )sin((1/(xy)))  c/lim_((x,y)→(∞,∞))  (x^2 +y^2 )e^(−(x+y))

$${a}/\:\underset{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{2}\right)} {\mathrm{lim}}\:\left(\mathrm{1}+{xy}\right)^{\frac{\mathrm{2}}{{x}^{\mathrm{2}} +{xy}}} \\ $$$${b}/\:\underset{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} {\mathrm{lim}}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){sin}\left(\frac{\mathrm{1}}{{xy}}\right) \\ $$$${c}/\underset{\left({x},{y}\right)\rightarrow\left(\infty,\infty\right)} {\mathrm{lim}}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){e}^{−\left({x}+{y}\right)} \\ $$

Answered by MM42 last updated on 24/Aug/23

a)lim_((x,y)→(0,2)) [(1+xy)^(1/(xy))   ]^( ((2xy)/(x^2 +xy)))    lim_((x,y)→(0,2)) [(1+xy)^(1/(xy))   ]^( ((2y)/(x+y)))  =e^2     b)   −(x^2 +y^2 )≤sin((1/(xy)))≤(x^2 +y^2 )  ⇒  lim_((x,y)→(0,0))  −(x^2 +y^2 )≤lim_((x,u)→(0,0))  sin((1/(xy)))≤lim_((x,y)→(0,0))  (x^2 +y^2 )  ⇒Ans=0  c)if  x=y>0 ⇒ lim_(x→+∞)  ((2x^2 )/e^(2x) ) =0  if  x=y<0 ⇒ lim_(x→+∞)  2x^2  e^(2x) =∞

$$\left.{a}\right){lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{2}\right)} \left[\left(\mathrm{1}+{xy}\right)^{\frac{\mathrm{1}}{{xy}}} \:\:\right]^{\:\frac{\mathrm{2}{xy}}{{x}^{\mathrm{2}} +{xy}}} \: \\ $$$${lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{2}\right)} \left[\left(\mathrm{1}+{xy}\right)^{\frac{\mathrm{1}}{{xy}}} \:\:\right]^{\:\frac{\mathrm{2}{y}}{{x}+{y}}} \:={e}^{\mathrm{2}} \\ $$$$ \\ $$$$\left.{b}\right)\:\:\:−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\leqslant{sin}\left(\frac{\mathrm{1}}{{xy}}\right)\leqslant\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\:\:{lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \:−\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)\leqslant{lim}_{\left({x},{u}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \:{sin}\left(\frac{\mathrm{1}}{{xy}}\right)\leqslant{lim}_{\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{Ans}=\mathrm{0} \\ $$$$\left.{c}\right){if}\:\:{x}={y}>\mathrm{0}\:\Rightarrow\:{lim}_{{x}\rightarrow+\infty} \:\frac{\mathrm{2}{x}^{\mathrm{2}} }{{e}^{\mathrm{2}{x}} }\:=\mathrm{0} \\ $$$${if}\:\:{x}={y}<\mathrm{0}\:\Rightarrow\:{lim}_{{x}\rightarrow+\infty} \:\mathrm{2}{x}^{\mathrm{2}} \:{e}^{\mathrm{2}{x}} =\infty \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com