Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 63536 by Rio Michael last updated on 05/Jul/19

a)  if y= x^m (1−x)^n , where n∈ Z^+ , the set of positive integers,  show that when (dy/dx)=0, x=(m/(m+n))  b)if y = 2(x−5)(√(x+4)) ,show that (dy/dx) = ((3(x+1))/((√(x+4)) ))  c) solve the equation  sinx−sin5x+cos3x = 0 for  0°≤x≤180°

$$\left.{a}\right)\:\:{if}\:{y}=\:{x}^{{m}} \left(\mathrm{1}−{x}\right)^{{n}} ,\:{where}\:{n}\in\:\mathbb{Z}^{+} ,\:{the}\:{set}\:{of}\:{positive}\:{integers}, \\ $$$${show}\:{that}\:{when}\:\frac{{dy}}{{dx}}=\mathrm{0},\:{x}=\frac{{m}}{{m}+{n}} \\ $$$$\left.{b}\right){if}\:{y}\:=\:\mathrm{2}\left({x}−\mathrm{5}\right)\sqrt{{x}+\mathrm{4}}\:,{show}\:{that}\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{3}\left({x}+\mathrm{1}\right)}{\sqrt{{x}+\mathrm{4}}\:} \\ $$$$\left.{c}\right)\:{solve}\:{the}\:{equation}\:\:{sinx}−{sin}\mathrm{5}{x}+{cos}\mathrm{3}{x}\:=\:\mathrm{0}\:{for}\:\:\mathrm{0}°\leqslant{x}\leqslant\mathrm{180}° \\ $$

Commented by Prithwish sen last updated on 05/Jul/19

a.(dy/dx) = mx^(m−1)  (1−x)^n −nx^m  (1−x)^(n−1)   ⇒ x^(m−1) (1−x)^(n−1)  [m(1−x)−nx] = 0  ⇒m(1−x) = nx  ⇒ x = (m/(m+n))  b.  (dy/dx) = 2(√(x+4)) +((2(x−5))/(2(√(x+4)))) = ((3(x+1))/(√(x+4)))  c. −2cos3xsin2x+cos3x = 0  either cos3x=0         or sin2x = (1/2)  ⇒ x= 30^°                          ⇒ x = 15^°   please check.

$$\boldsymbol{\mathrm{a}}.\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{mx}^{\mathrm{m}−\mathrm{1}} \:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} −\mathrm{nx}^{\mathrm{m}} \:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}−\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{x}^{\mathrm{m}−\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}−\mathrm{1}} \:\left[\mathrm{m}\left(\mathrm{1}−\mathrm{x}\right)−\mathrm{nx}\right]\:=\:\mathrm{0} \\ $$$$\Rightarrow\mathrm{m}\left(\mathrm{1}−\mathrm{x}\right)\:=\:\mathrm{nx}\:\:\Rightarrow\:\mathrm{x}\:=\:\frac{\mathrm{m}}{\mathrm{m}+\mathrm{n}} \\ $$$$\boldsymbol{\mathrm{b}}.\:\:\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{2}\sqrt{\mathrm{x}+\mathrm{4}}\:+\frac{\mathrm{2}\left(\mathrm{x}−\mathrm{5}\right)}{\mathrm{2}\sqrt{\mathrm{x}+\mathrm{4}}}\:=\:\frac{\mathrm{3}\left(\mathrm{x}+\mathrm{1}\right)}{\sqrt{\mathrm{x}+\mathrm{4}}} \\ $$$$\boldsymbol{\mathrm{c}}.\:−\mathrm{2cos3xsin2x}+\mathrm{cos3x}\:=\:\mathrm{0} \\ $$$$\mathrm{either}\:\mathrm{cos3x}=\mathrm{0}\:\:\:\:\:\:\:\:\:\mathrm{or}\:\mathrm{sin2x}\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{x}=\:\mathrm{30}^{°} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\mathrm{x}\:=\:\mathrm{15}^{°} \\ $$$$\mathrm{please}\:\mathrm{check}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com