Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 213417 by hardmath last updated on 04/Nov/24

a , b , c , d ∈ N  a + b + c + d = 63  Find:   maksimum(ab + bc + cd) = ?

$$\mathrm{a}\:,\:\mathrm{b}\:,\:\mathrm{c}\:,\:\mathrm{d}\:\in\:\mathbb{N} \\ $$$$\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:+\:\mathrm{d}\:=\:\mathrm{63} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{maksimum}\left(\mathrm{ab}\:+\:\mathrm{bc}\:+\:\mathrm{cd}\right)\:=\:? \\ $$

Answered by Frix last updated on 05/Nov/24

d=63−a−b−c  f=ab−ac−c^2 +63c  (df/da)=b−c=0  (df/db)=a=0  (df/dc)=−a−2c+63=0  a=d=0∧b=c=((63)/2)  ab+bc+cd=(((63)/2))^2 =((3969)/4)

$${d}=\mathrm{63}−{a}−{b}−{c} \\ $$$${f}={ab}−{ac}−{c}^{\mathrm{2}} +\mathrm{63}{c} \\ $$$$\frac{{df}}{{da}}={b}−{c}=\mathrm{0} \\ $$$$\frac{{df}}{{db}}={a}=\mathrm{0} \\ $$$$\frac{{df}}{{dc}}=−{a}−\mathrm{2}{c}+\mathrm{63}=\mathrm{0} \\ $$$${a}={d}=\mathrm{0}\wedge{b}={c}=\frac{\mathrm{63}}{\mathrm{2}} \\ $$$${ab}+{bc}+{cd}=\left(\frac{\mathrm{63}}{\mathrm{2}}\right)^{\mathrm{2}} =\frac{\mathrm{3969}}{\mathrm{4}} \\ $$

Commented by A5T last updated on 05/Nov/24

a,b,c,d∈N⇒ab+bc+cd∈N

$${a},{b},{c},{d}\in\mathbb{N}\Rightarrow{ab}+{bc}+{cd}\in\mathbb{N} \\ $$

Commented by Frix last updated on 05/Nov/24

Sorry

$$\mathrm{Sorry} \\ $$

Commented by Tinku Tara last updated on 05/Nov/24

You answer is 992, while Mr W is  991. You are including 0∈N?

$$\mathrm{You}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{992},\:\mathrm{while}\:\mathrm{Mr}\:\mathrm{W}\:\mathrm{is} \\ $$$$\mathrm{991}.\:\mathrm{You}\:\mathrm{are}\:\mathrm{including}\:\mathrm{0}\in\mathbb{N}? \\ $$

Answered by mr W last updated on 05/Nov/24

ab+bc+cd=(a+c)(b+d)−ad  (ad)_(min) =1×1=1  say (a+c)(b+d)=pq, with p+q=63  [(a+c)(b+d)]_(max) =(pq)_(max) =31×32  ⇒(ab+bc+cd)_(max) =31×32−1=991

$${ab}+{bc}+{cd}=\left({a}+{c}\right)\left({b}+{d}\right)−{ad} \\ $$$$\left({ad}\right)_{{min}} =\mathrm{1}×\mathrm{1}=\mathrm{1} \\ $$$${say}\:\left({a}+{c}\right)\left({b}+{d}\right)={pq},\:{with}\:{p}+{q}=\mathrm{63} \\ $$$$\left[\left({a}+{c}\right)\left({b}+{d}\right)\right]_{{max}} =\left({pq}\right)_{{max}} =\mathrm{31}×\mathrm{32} \\ $$$$\Rightarrow\left({ab}+{bc}+{cd}\right)_{{max}} =\mathrm{31}×\mathrm{32}−\mathrm{1}=\mathrm{991} \\ $$

Commented by hardmath last updated on 05/Nov/24

thankyou dearprofessor

$$\mathrm{thankyou}\:\mathrm{dearprofessor} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com