Question Number 195790 by justenspi last updated on 10/Aug/23 | ||
$${a},{b},{c}\:{are}\:{positive}\:{real}\:{numbers}\:{and}\:{abc}\:=\mathrm{1} \\ $$$${prove}\:{that} \\ $$$$\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\leqslant\mathrm{1} \\ $$ | ||
Commented by justenspi last updated on 10/Aug/23 | ||
$${Case}\left({I}\right)\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right),\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right),\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)>\mathrm{0} \\ $$$$\Rightarrow\sqrt[{\mathrm{3}}]{\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)}\leqslant\frac{{a}+{b}+{c}+{ab}+{bc}+{ac}−\mathrm{3}}{\mathrm{3}}......\left({i}\right) \\ $$$$\Rightarrow\sqrt[{\mathrm{3}}]{\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)}\leqslant\frac{{ab}+{bc}+{ac}−{a}−{b}−{c}+\mathrm{3}}{\mathrm{3}}......\left({ii}\right) \\ $$$$\Rightarrow\mathrm{2}\sqrt[{\mathrm{3}}]{\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)}\leqslant\frac{\mathrm{2}\left({ab}+{bc}+{ac}\right)}{\mathrm{3}} \\ $$$$\Rightarrow\sqrt[{\mathrm{3}}]{\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)}\leqslant\frac{{ab}+{bc}+{ac}}{\mathrm{3}} \\ $$$${the}\:{equality}\:{holds}\:{when} \\ $$$${a}+{b}+{c}={ab}+{bc}+{ac}\wedge{abc}=\mathrm{1}\wedge{a},{b},{c}>\mathrm{0} \\ $$$$\Rightarrow{a}+{b}+{c}=\frac{\mathrm{1}}{{a}}+\frac{\mathrm{1}}{{b}}+\frac{\mathrm{1}}{{c}}\Rightarrow{a}=\mathrm{1},{b}=\mathrm{1},{c}=\mathrm{1} \\ $$$${hence}\:{the}\:{maximum}\:{value}\:{of} \\ $$$$\sqrt[{\mathrm{3}}]{\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)}\rightarrow\frac{\mathrm{1}+\mathrm{1}+\mathrm{1}}{\mathrm{3}}=\mathrm{1} \\ $$$$\Rightarrow\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\:{max}\:=\mathrm{1} \\ $$$${Case}\left({II}\right)\:{At}\:{most}\:{one}\:{the}\:{factors}\:{is}\:{negative} \\ $$$${hence}\:{we}\:{are}\:{done} \\ $$ | ||
Commented by justenspi last updated on 10/Aug/23 | ||
$${is}\:{that}\:{right}\:,\:{please}\:{help}\: \\ $$ | ||
Answered by York12 last updated on 10/Aug/23 | ||
$$ \\ $$$${set}\:{a}=\frac{{x}}{{y}},{b}=\frac{{y}}{{z}},{c}=\frac{{z}}{{x}} \\ $$$$\Rightarrow\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right) \\ $$$$=\frac{\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)\left(−{x}+{y}+{z}\right)}{{xyz}} \\ $$$$\sqrt{\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)}\leqslant\frac{{x}−{y}+{z}+{x}+{y}−{z}}{\mathrm{2}}={x}....\left({i}\right) \\ $$$$\sqrt{\left({x}+{y}−{z}\right)\left(−{x}+{y}+{z}\right)}\leqslant\frac{{x}+{y}−{z}−{x}+{y}+{z}}{\mathrm{2}}={y}....\left({ii}\right) \\ $$$$\sqrt{\left({x}−{y}+{z}\right)\left(−{x}+{y}+{z}\right)}\leqslant\frac{{x}−{y}+{z}−{x}+{y}+{z}}{\mathrm{2}}={z}....\left({iii}\right) \\ $$$$\Rightarrow\left({i}\right)×\left({ii}\right)×\left({iii}\right)\Rightarrow\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)\left(−{x}+{y}+{z}\right)\leqslant{xyz} \\ $$$$\Rightarrow\frac{\left({x}−{y}+{z}\right)\left({x}+{y}−{z}\right)\left(−{x}+{y}+{z}\right)}{{xyz}}\leqslant\mathrm{1} \\ $$$$\Rightarrow\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\leqslant\mathrm{1} \\ $$$${In}\:{case}\:\:{one}\:{of}\:{the}\:{factors}\:{is}\:{negative} \\ $$$$\Rightarrow\left({a}−\mathrm{1}+\frac{\mathrm{1}}{{b}}\right)\left({b}−\mathrm{1}+\frac{\mathrm{1}}{{c}}\right)\left({c}−\mathrm{1}+\frac{\mathrm{1}}{{a}}\right)\leqslant\mathrm{0}<\mathrm{1}\: \\ $$ | ||
Commented by justenspi last updated on 10/Aug/23 | ||
$${thanks}\:{but}\:{is}\:{my}\:{solution}\:{right} \\ $$ | ||