Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 74412 by ajfour last updated on 24/Nov/19

a,b,c are given real constants.  p,q,r,t are unknowns from which  we can choose values of two of  them (non zero) and have to   determine the other two (non zero),  obeying  two equations given below   p^2 +q(1+bq)t^2 +q(ap+br)t       +r(1+bq)t+r(ap+br) = 0  pt+q(a+cq)t^2 +r(a+cq)t      +cqrt+cr^2 = 0  Can this be done solving a  quadratic eq. and none higher..?

$${a},{b},{c}\:{are}\:{given}\:{real}\:{constants}. \\ $$$${p},{q},{r},{t}\:{are}\:{unknowns}\:{from}\:{which} \\ $$$${we}\:{can}\:{choose}\:{values}\:{of}\:{two}\:{of} \\ $$$${them}\:\left({non}\:{zero}\right)\:{and}\:{have}\:{to}\: \\ $$$${determine}\:{the}\:{other}\:{two}\:\left({non}\:{zero}\right), \\ $$$${obeying}\:\:{two}\:{equations}\:{given}\:{below} \\ $$$$\:{p}^{\mathrm{2}} +{q}\left(\mathrm{1}+{bq}\right){t}^{\mathrm{2}} +{q}\left({ap}+{br}\right){t} \\ $$$$\:\:\:\:\:+{r}\left(\mathrm{1}+{bq}\right){t}+{r}\left({ap}+{br}\right)\:=\:\mathrm{0} \\ $$$${pt}+{q}\left({a}+{cq}\right){t}^{\mathrm{2}} +{r}\left({a}+{cq}\right){t} \\ $$$$\:\:\:\:+{cqrt}+{cr}^{\mathrm{2}} =\:\mathrm{0} \\ $$$${Can}\:{this}\:{be}\:{done}\:{solving}\:{a} \\ $$$${quadratic}\:{eq}.\:{and}\:{none}\:{higher}..? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com