Question Number 215973 by MATHEMATICSAM last updated on 23/Jan/25 | ||
![]() | ||
$$\left({a}\:+\:{b}\right)\:\propto\:{c}\:\mathrm{and}\:\left({b}\:+\:{c}\right)\:\propto\:{a}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left({c}\:+\:{a}\right)\:\propto\:{b}. \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 24/Jan/25 | ||
![]() | ||
$$\left({a}\:+\:{b}\right)\:\propto\:{c}\:\mathrm{and}\:\left({b}\:+\:{c}\right)\:\propto\:{a}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\left({c}\:+\:{a}\right)\:\propto\:{b}. \\ $$$$\frac{{a}+{b}}{{c}}={k}_{\mathrm{1}} ,\frac{{b}+{c}}{{a}}={k}_{\mathrm{2}} \\ $$$$\frac{{a}+{b}}{{c}}+\mathrm{1}={k}_{\mathrm{1}} +\mathrm{1},\frac{{b}+{c}}{{a}}+\mathrm{1}={k}_{\mathrm{2}} +\mathrm{1} \\ $$$$\frac{{a}+{b}+{c}}{{c}}={k}_{\mathrm{1}} +\mathrm{1},\frac{{a}+{b}+{c}}{{a}}={k}_{\mathrm{2}} +\mathrm{1} \\ $$$${a}+{b}+{c}={ck}_{\mathrm{1}} +{c}={ak}_{\mathrm{2}} +{a} \\ $$$${c}=\frac{{ak}_{\mathrm{2}} +{a}}{{k}_{\mathrm{1}} +\mathrm{1}} \\ $$$${c}+{a}=\frac{{ak}_{\mathrm{2}} +{a}}{{k}_{\mathrm{1}} +\mathrm{1}}+{a}=\frac{{ak}_{\mathrm{2}} +{a}+{ak}_{\mathrm{1}} +{a}}{{k}_{\mathrm{1}} +\mathrm{1}} \\ $$$$\:\:\:\:\:{c}+{a}={a}\left(\frac{{k}_{\mathrm{1}} +{k}_{\mathrm{2}} +\mathrm{2}}{{k}_{\mathrm{1}} +\mathrm{1}}\right) \\ $$$$\Rightarrow{c}+{a}\propto{a}\:\:?? \\ $$$$.... \\ $$ | ||
Commented by MATHEMATICSAM last updated on 24/Jan/25 | ||
![]() | ||
$$\mathrm{Can}\:\mathrm{you}\:\mathrm{try}\:\mathrm{by}\:\mathrm{cancelling}\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\mathrm{by} \\ $$$$\mathrm{dividing}\:\mathrm{and}\:\mathrm{making}\:\mathrm{a}\:=\:\mathrm{mc}\:\left(\mathrm{m}\:=\:\mathrm{const}\right) \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 24/Jan/25 | ||
![]() | ||
$$\mathrm{a}\:=\:\mathrm{mc}\Rightarrow\mathrm{a}\propto\mathrm{c} \\ $$$$\mathrm{why}\:\mathrm{should}\:\mathrm{we}\:\mathrm{assume}\:\mathrm{a}\propto\mathrm{c}\:? \\ $$ | ||
Answered by Rasheed.Sindhi last updated on 24/Jan/25 | ||
![]() | ||
$$\: \\ $$$${a}+{b}={pc}.....\left({i}\right) \\ $$$${b}+{c}={qa}....\left({ii}\right) \\ $$$${let}\:{c}+{a}={rb}\:;\:{r}\:{is}\:{constant}.....\left({iii}\right) \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$${c}−{a}={qa}−{pc}....\left({iv}\right) \\ $$$$\left({iii}\right)+\left({iv}\right)\:: \\ $$$$\mathrm{2}{c}={rb}+{qa}−{pc}...\left({v}\right) \\ $$$$\left({iii}\right)−\left({iv}\right): \\ $$$$\mathrm{2}{a}={rb}−{qa}+{pc}....\left({vi}\right) \\ $$$$\left({v}\right)+\left({vi}\right): \\ $$$$\mathrm{2}{c}+\mathrm{2}{a}=\mathrm{2}{rb}\Rightarrow{c}+{a}={rb}\Rightarrow{c}+{a}\propto{b} \\ $$ | ||
Commented by Rasheed.Sindhi last updated on 24/Jan/25 | ||
![]() | ||
$${Not}\:{sure}\:{that}\:{the}\:{answer}\:{is}\:{correct} \\ $$ | ||