Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205767 by lmcp1203 last updated on 30/Mar/24

  a,b,c ∈ℜ^+     a+b+c=1     a^2 /(1+b+c) + b^2 /(1+a+c)  + c^2 /(1+a+b)≥k  find   k max.  hint : inequality cauchy schwarz

$$ \\ $$$${a},{b},{c}\:\in\Re^{+} \:\: \\ $$$${a}+{b}+{c}=\mathrm{1} \\ $$$$\:\:\:{a}^{\mathrm{2}} /\left(\mathrm{1}+{b}+{c}\right)\:+\:{b}^{\mathrm{2}} /\left(\mathrm{1}+{a}+{c}\right)\:\:+\:{c}^{\mathrm{2}} /\left(\mathrm{1}+{a}+{b}\right)\geqslant{k} \\ $$$${find}\:\:\:{k}\:{max}. \\ $$$${hint}\::\:{inequality}\:{cauchy}\:{schwarz} \\ $$$$ \\ $$

Answered by A5T last updated on 30/Mar/24

Σ(a^2 /(1+b+c))≥(((a+b+c)^2 )/(3+2(a+b+c)))=(1/5)

$$\Sigma\frac{{a}^{\mathrm{2}} }{\mathrm{1}+{b}+{c}}\geqslant\frac{\left({a}+{b}+\mathrm{c}\right)^{\mathrm{2}} }{\mathrm{3}+\mathrm{2}\left({a}+{b}+{c}\right)}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$

Commented by lmcp1203 last updated on 30/Mar/24

thanks

$${thanks} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com