Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 207436 by CrispyXYZ last updated on 15/May/24

a, b∈N_+ , ((b+1)/a)+((a+1)/b)∈Z. Prove that   (a, b)≤(√(a+b.))

$${a},\:{b}\in\mathbb{N}_{+} ,\:\frac{{b}+\mathrm{1}}{{a}}+\frac{{a}+\mathrm{1}}{{b}}\in\mathbb{Z}.\:\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\left({a},\:{b}\right)\leqslant\sqrt{{a}+{b}.} \\ $$

Commented by A5T last updated on 15/May/24

What is meant by (a,b)?

$${What}\:{is}\:{meant}\:{by}\:\left({a},{b}\right)? \\ $$

Commented by CrispyXYZ last updated on 15/May/24

the greatest common divisor of a, b

$$\mathrm{the}\:\mathrm{greatest}\:\mathrm{common}\:\mathrm{divisor}\:\mathrm{of}\:{a},\:{b} \\ $$

Answered by Berbere last updated on 16/May/24

((b^2 +a^2 +a+b)/(ab))∈Z  ab∣(a+b)^2 −ab+(a+b);a∣b⇔a=kb  ⇒ab∣(a+b)(1+(a+b))′..(E)  letd=(a,b)⇒a=da′;b=db′  E⇔d^2 a′b′∣(da′+db′)(1+d(a′+b′))  d^2 ∣d^2 a′b′⇒d^2 ∣(da′+db′)+d^2 (a′+b′)^2   ⇒d^2 ∣d(a′+b′)⇔d^2 ∣da′+db′⇔d^2 ∣a+b  ⇒d^2 ≤a+b⇒d≤(√(a+b))

$$\frac{{b}^{\mathrm{2}} +{a}^{\mathrm{2}} +{a}+{b}}{{ab}}\in{Z} \\ $$$${ab}\mid\left({a}+{b}\right)^{\mathrm{2}} −{ab}+\left({a}+{b}\right);{a}\mid{b}\Leftrightarrow{a}={kb} \\ $$$$\Rightarrow{ab}\mid\left({a}+{b}\right)\left(\mathrm{1}+\left({a}+{b}\right)\right)'..\left({E}\right) \\ $$$${letd}=\left({a},{b}\right)\Rightarrow{a}={da}';{b}={db}' \\ $$$${E}\Leftrightarrow{d}^{\mathrm{2}} {a}'{b}'\mid\left({da}'+{db}'\right)\left(\mathrm{1}+{d}\left({a}'+{b}'\right)\right) \\ $$$${d}^{\mathrm{2}} \mid{d}^{\mathrm{2}} {a}'{b}'\Rightarrow{d}^{\mathrm{2}} \mid\left({da}'+{db}'\right)+{d}^{\mathrm{2}} \left({a}'+{b}'\right)^{\mathrm{2}} \\ $$$$\Rightarrow{d}^{\mathrm{2}} \mid{d}\left({a}'+{b}'\right)\Leftrightarrow{d}^{\mathrm{2}} \mid{da}'+{db}'\Leftrightarrow{d}^{\mathrm{2}} \mid{a}+{b} \\ $$$$\Rightarrow{d}^{\mathrm{2}} \leqslant{a}+{b}\Rightarrow{d}\leqslant\sqrt{{a}+{b}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com