Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 36132 by Rasheed.Sindhi last updated on 29/May/18

a+b=10.........(i)  ab+c=0..........(ii)  ac+d=6..........(iii)  ad=−1...........(iv)  (a,b,c,d)=?  Note: This problem is related to solve  the equation (t^4 +10t+6t−1=0) of  Q#35844

$${a}+{b}=\mathrm{10}.........\left(\mathrm{i}\right) \\ $$$${ab}+{c}=\mathrm{0}..........\left(\mathrm{ii}\right) \\ $$$${ac}+{d}=\mathrm{6}..........\left(\mathrm{iii}\right) \\ $$$${ad}=−\mathrm{1}...........\left(\mathrm{iv}\right) \\ $$$$\left({a},{b},{c},{d}\right)=? \\ $$$$\mathcal{N}{ote}:\:{This}\:{problem}\:{is}\:{related}\:{to}\:{solve} \\ $$$${the}\:{equation}\:\left({t}^{\mathrm{4}} +\mathrm{10}{t}+\mathrm{6}{t}−\mathrm{1}=\mathrm{0}\right)\:{of} \\ $$$${Q}#\mathrm{35844} \\ $$

Commented by Rasheed.Sindhi last updated on 29/May/18

(i)⇒a=10−b⇒     (ii):   (10−b)b+c=0⇒c=(b−10)b     (iii):  (10−b)c+d=6⇒(10−b){(b−10)b}=6      (iv):(10−b)d=−1  (ii):c=(b−10)b⇒        (iii):(10−b)(b−10)b−(1/(10−b))=6             −(b−10)(b−10)b+(1/(b−10))=6            −b(b−10)^3 +1=6(b−10)                  Wrongly derived cubic equation.Sorry!  b^3 −20b^2 +100b+6=0  Aunybody who know how to solve cubic equation..

$$\left(\mathrm{i}\right)\Rightarrow{a}=\mathrm{10}−{b}\Rightarrow \\ $$$$\:\:\:\left(\mathrm{ii}\right):\:\:\:\left(\mathrm{10}−{b}\right){b}+{c}=\mathrm{0}\Rightarrow{c}=\left({b}−\mathrm{10}\right){b} \\ $$$$\:\:\:\left(\mathrm{iii}\right):\:\:\left(\mathrm{10}−{b}\right){c}+{d}=\mathrm{6}\Rightarrow\left(\mathrm{10}−{b}\right)\left\{\left({b}−\mathrm{10}\right){b}\right\}=\mathrm{6} \\ $$$$\:\:\:\:\left(\mathrm{iv}\right):\left(\mathrm{10}−{b}\right){d}=−\mathrm{1} \\ $$$$\left(\mathrm{ii}\right):{c}=\left({b}−\mathrm{10}\right){b}\Rightarrow \\ $$$$\:\:\:\:\:\:\left(\mathrm{iii}\right):\left(\mathrm{10}−{b}\right)\left({b}−\mathrm{10}\right){b}−\frac{\mathrm{1}}{\mathrm{10}−{b}}=\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−\left({b}−\mathrm{10}\right)\left({b}−\mathrm{10}\right){b}+\frac{\mathrm{1}}{{b}−\mathrm{10}}=\mathrm{6} \\ $$$$\:\:\:\:\:\:\:\:\:\:−{b}\left({b}−\mathrm{10}\right)^{\mathrm{3}} +\mathrm{1}=\mathrm{6}\left({b}−\mathrm{10}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$${W}\mathrm{rongly}\:\mathrm{derived}\:\mathrm{cubic}\:\mathrm{equation}.\mathrm{Sorry}! \\ $$$${b}^{\mathrm{3}} −\mathrm{20}{b}^{\mathrm{2}} +\mathrm{100}{b}+\mathrm{6}=\mathrm{0} \\ $$$${A}\mathrm{unybody}\:\mathrm{who}\:\mathrm{know}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{cubic}\:\mathrm{equation}.. \\ $$

Commented by prakash jain last updated on 29/May/18

There is a procedure to solve cubic  equation and also cubic formula.    It is easier to follow step then remembering  the formula.

$$\mathrm{There}\:\mathrm{is}\:\mathrm{a}\:\mathrm{procedure}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{cubic} \\ $$$$\mathrm{equation}\:\mathrm{and}\:\mathrm{also}\:\mathrm{cubic}\:\mathrm{formula}. \\ $$$$ \\ $$$$\mathrm{It}\:\mathrm{is}\:\mathrm{easier}\:\mathrm{to}\:\mathrm{follow}\:\mathrm{step}\:\mathrm{then}\:\mathrm{remembering} \\ $$$$\mathrm{the}\:\mathrm{formula}. \\ $$

Commented by mondodotto@gmail.com last updated on 29/May/18

use a calculator

$$\mathrm{use}\:\mathrm{a}\:\mathrm{calculator} \\ $$

Commented by prakash jain last updated on 29/May/18

http://www.sosmath.com/algebra/factor/fac11/fac11.html

Commented by Rasheed.Sindhi last updated on 29/May/18

Th∞nkS Sir! I always have learnt  from you.

$$\mathcal{T}{h}\infty{nk}\mathcal{S}\:\mathcal{S}{ir}!\:{I}\:{always}\:{have}\:{learnt} \\ $$$${from}\:{you}. \\ $$

Commented by MJS last updated on 29/May/18

the problem with Cardano′s method is,  you won′t get real solutions of usable form  (x−3)(x+4)(x−5)=0  x^3 −4x^2 −17x+60=0  x=z+(4/3)  z^3 −((67)/3)z+((880)/(27))=0  p=−((67)/3); q=((880)/(27))  z_1 =u+v  z_2 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v  z_3 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v  u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) =((−((440)/(27))+7(√3)i))^(1/3)   v=((−(q/2)−(√((p^3 /(27))+(q^2 /4)))))^(1/3) =((−((440)/(27))+7(√3)i))^(1/3)   u+v=((−((440)/(27))+7(√3)i))^(1/3) +((−((440)/(27))+7(√3)i))^(1/3) =((11)/3)  but you cannot easily show this is true  and in a case like  (x−a−bi)(x−a+bi)(x−c)=0  it′s impossible

$$\mathrm{the}\:\mathrm{problem}\:\mathrm{with}\:\mathrm{Cardano}'\mathrm{s}\:\mathrm{method}\:\mathrm{is}, \\ $$$$\mathrm{you}\:\mathrm{won}'\mathrm{t}\:\mathrm{get}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{usable}\:\mathrm{form} \\ $$$$\left({x}−\mathrm{3}\right)\left({x}+\mathrm{4}\right)\left({x}−\mathrm{5}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} −\mathrm{17}{x}+\mathrm{60}=\mathrm{0} \\ $$$${x}={z}+\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${z}^{\mathrm{3}} −\frac{\mathrm{67}}{\mathrm{3}}{z}+\frac{\mathrm{880}}{\mathrm{27}}=\mathrm{0} \\ $$$${p}=−\frac{\mathrm{67}}{\mathrm{3}};\:{q}=\frac{\mathrm{880}}{\mathrm{27}} \\ $$$${z}_{\mathrm{1}} ={u}+{v} \\ $$$${z}_{\mathrm{2}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$$${z}_{\mathrm{3}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){u}+\left(−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i}\right){v} \\ $$$${u}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}+\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}}=\sqrt[{\mathrm{3}}]{−\frac{\mathrm{440}}{\mathrm{27}}+\mathrm{7}\sqrt{\mathrm{3}}\mathrm{i}} \\ $$$${v}=\sqrt[{\mathrm{3}}]{−\frac{{q}}{\mathrm{2}}−\sqrt{\frac{{p}^{\mathrm{3}} }{\mathrm{27}}+\frac{{q}^{\mathrm{2}} }{\mathrm{4}}}}=\sqrt[{\mathrm{3}}]{−\frac{\mathrm{440}}{\mathrm{27}}+\mathrm{7}\sqrt{\mathrm{3}}\mathrm{i}} \\ $$$${u}+{v}=\sqrt[{\mathrm{3}}]{−\frac{\mathrm{440}}{\mathrm{27}}+\mathrm{7}\sqrt{\mathrm{3}}\mathrm{i}}+\sqrt[{\mathrm{3}}]{−\frac{\mathrm{440}}{\mathrm{27}}+\mathrm{7}\sqrt{\mathrm{3}}\mathrm{i}}=\frac{\mathrm{11}}{\mathrm{3}} \\ $$$$\mathrm{but}\:\mathrm{you}\:\mathrm{cannot}\:\mathrm{easily}\:\mathrm{show}\:\mathrm{this}\:\mathrm{is}\:\mathrm{true} \\ $$$$\mathrm{and}\:\mathrm{in}\:\mathrm{a}\:\mathrm{case}\:\mathrm{like} \\ $$$$\left({x}−{a}−{b}\mathrm{i}\right)\left({x}−{a}+{b}\mathrm{i}\right)\left({x}−{c}\right)=\mathrm{0} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{impossible} \\ $$

Commented by Rasheed.Sindhi last updated on 30/May/18

ThankS a lot Sir!

$$\mathcal{T}{hank}\mathcal{S}\:{a}\:{lot}\:\mathcal{S}{ir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com