Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 119575 by mathocean1 last updated on 25/Oct/20

a ∈ N. a is not a multiple of 3.  1) Show that a^3 ≡−1[9] or a^3 ≡1[9].  2) Given a; b; c ∈ Z.  Deduct from 1) that if a^3 +b^3 +c^3 ≡0[9] , then    one of integers a; b; c is divisible by 3.

$$\mathrm{a}\:\in\:\mathbb{N}.\:\mathrm{a}\:\mathrm{is}\:\mathrm{not}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\mathrm{3}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Show}\:\mathrm{that}\:\mathrm{a}^{\mathrm{3}} \equiv−\mathrm{1}\left[\mathrm{9}\right]\:\mathrm{or}\:\mathrm{a}^{\mathrm{3}} \equiv\mathrm{1}\left[\mathrm{9}\right]. \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Given}\:\mathrm{a};\:\mathrm{b};\:\mathrm{c}\:\in\:\mathbb{Z}. \\ $$$$\left.\mathrm{Deduct}\:\mathrm{from}\:\mathrm{1}\right)\:\mathrm{that}\:\mathrm{if}\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} \equiv\mathrm{0}\left[\mathrm{9}\right]\:,\:\mathrm{then}\:\: \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{integers}\:\mathrm{a};\:\mathrm{b};\:\mathrm{c}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}. \\ $$

Answered by mindispower last updated on 25/Oct/20

a=3k+_− 1  ⇒a^3 (3k+_− 1)^3 =27k^3 +_− 27k^2 +9k+_− 1  =9(3k^2 +_− 3k^2 +k)+_− 1  ⇒a^3 =+_− 1[9]  a^3 +b^3 +c^3 ≡0[9]  suppose that  non of them≡0[9]  ⇒a^3 ,b^3 ,c^3 ≡+_− 1[9]  a^3 +b^3 +c^3 ≡(−3,−1,1,3)[9]  are all possibility≠0[9]  ⇒one of theme ≡0[9]  exemple a=3k,b=3e+1,c=3w−1

$${a}=\mathrm{3}{k}\underset{−} {+}\mathrm{1} \\ $$$$\Rightarrow{a}^{\mathrm{3}} \left(\mathrm{3}{k}\underset{−} {+}\mathrm{1}\right)^{\mathrm{3}} =\mathrm{27}{k}^{\mathrm{3}} \underset{−} {+}\mathrm{27}{k}^{\mathrm{2}} +\mathrm{9}{k}\underset{−} {+}\mathrm{1} \\ $$$$=\mathrm{9}\left(\mathrm{3}{k}^{\mathrm{2}} \underset{−} {+}\mathrm{3}{k}^{\mathrm{2}} +{k}\right)\underset{−} {+}\mathrm{1} \\ $$$$\Rightarrow{a}^{\mathrm{3}} =\underset{−} {+}\mathrm{1}\left[\mathrm{9}\right] \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \equiv\mathrm{0}\left[\mathrm{9}\right] \\ $$$${suppose}\:{that}\:\:{non}\:{of}\:{them}\equiv\mathrm{0}\left[\mathrm{9}\right] \\ $$$$\Rightarrow{a}^{\mathrm{3}} ,{b}^{\mathrm{3}} ,{c}^{\mathrm{3}} \equiv\underset{−} {+}\mathrm{1}\left[\mathrm{9}\right] \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \equiv\left(−\mathrm{3},−\mathrm{1},\mathrm{1},\mathrm{3}\right)\left[\mathrm{9}\right] \\ $$$${are}\:{all}\:{possibility}\neq\mathrm{0}\left[\mathrm{9}\right] \\ $$$$\Rightarrow{one}\:{of}\:{theme}\:\equiv\mathrm{0}\left[\mathrm{9}\right] \\ $$$${exemple}\:{a}=\mathrm{3}{k},{b}=\mathrm{3}{e}+\mathrm{1},{c}=\mathrm{3}{w}−\mathrm{1} \\ $$

Commented by mathocean1 last updated on 25/Oct/20

please sir at the eighth line can you detail  how −3; −1; 1; 3 appeared ?

$$\mathrm{please}\:\mathrm{sir}\:\mathrm{at}\:\mathrm{the}\:\mathrm{eighth}\:\mathrm{line}\:\mathrm{can}\:\mathrm{you}\:\mathrm{detail} \\ $$$$\mathrm{how}\:−\mathrm{3};\:−\mathrm{1};\:\mathrm{1};\:\mathrm{3}\:\mathrm{appeared}\:? \\ $$

Commented by mindispower last updated on 25/Oct/20

yeah withe pleasur   since evrey a^3 =+_− (9)  what is possible value of  x+y+z withs z,y,x∈{−1,1}  if one =−1⇒−1+1+1=1  if two=−1,⇒−1+1−1=−1  3 of theme−1−1−1=−3  0 of theme,1+1+1=3

$${yeah}\:{withe}\:{pleasur}\: \\ $$$${since}\:{evrey}\:{a}^{\mathrm{3}} =\underset{−} {+}\left(\mathrm{9}\right) \\ $$$${what}\:{is}\:{possible}\:{value}\:{of} \\ $$$${x}+{y}+{z}\:{withs}\:{z},{y},{x}\in\left\{−\mathrm{1},\mathrm{1}\right\} \\ $$$${if}\:{one}\:=−\mathrm{1}\Rightarrow−\mathrm{1}+\mathrm{1}+\mathrm{1}=\mathrm{1} \\ $$$${if}\:{two}=−\mathrm{1},\Rightarrow−\mathrm{1}+\mathrm{1}−\mathrm{1}=−\mathrm{1} \\ $$$$\mathrm{3}\:{of}\:{theme}−\mathrm{1}−\mathrm{1}−\mathrm{1}=−\mathrm{3} \\ $$$$\mathrm{0}\:{of}\:{theme},\mathrm{1}+\mathrm{1}+\mathrm{1}=\mathrm{3} \\ $$

Commented by mathocean1 last updated on 25/Oct/20

thank you very much sir.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com