Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 194991 by York12 last updated on 21/Jul/23

  a_3 x^3 −x^2 +a_1 x−7=0 is a cubic polynomial in x  whose Roots are α , β , γ positive real numbers  satisfying  ((225α^2 )/(α^2 +7))=((144β^2 )/(β^2 +7))=((100γ^2 )/(γ^2 +7))  Find (a_1 )

$$ \\ $$$${a}_{\mathrm{3}} {x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{a}_{\mathrm{1}} {x}−\mathrm{7}=\mathrm{0}\:{is}\:{a}\:{cubic}\:{polynomial}\:{in}\:{x} \\ $$$${whose}\:{Roots}\:{are}\:\alpha\:,\:\beta\:,\:\gamma\:{positive}\:{real}\:{numbers} \\ $$$${satisfying} \\ $$$$\frac{\mathrm{225}\alpha^{\mathrm{2}} }{\alpha^{\mathrm{2}} +\mathrm{7}}=\frac{\mathrm{144}\beta^{\mathrm{2}} }{\beta^{\mathrm{2}} +\mathrm{7}}=\frac{\mathrm{100}\gamma^{\mathrm{2}} }{\gamma^{\mathrm{2}} +\mathrm{7}} \\ $$$${Find}\:\left({a}_{\mathrm{1}} \right) \\ $$

Commented by Frix last updated on 21/Jul/23

α:β:γ=21:35:189  α=(7/3)∧β=((35)/9)∧γ=21  a_3 =(9/(245))∧a_1 =((77)/(15))

$$\alpha:\beta:\gamma=\mathrm{21}:\mathrm{35}:\mathrm{189} \\ $$$$\alpha=\frac{\mathrm{7}}{\mathrm{3}}\wedge\beta=\frac{\mathrm{35}}{\mathrm{9}}\wedge\gamma=\mathrm{21} \\ $$$${a}_{\mathrm{3}} =\frac{\mathrm{9}}{\mathrm{245}}\wedge{a}_{\mathrm{1}} =\frac{\mathrm{77}}{\mathrm{15}} \\ $$

Commented by York12 last updated on 21/Jul/23

how did you get it bro

$${how}\:{did}\:{you}\:{get}\:{it}\:{bro} \\ $$

Commented by York12 last updated on 21/Jul/23

and what is your advice to get better at solving  such problems

$${and}\:{what}\:{is}\:{your}\:{advice}\:{to}\:{get}\:{better}\:{at}\:{solving} \\ $$$${such}\:{problems} \\ $$$$ \\ $$

Commented by York12 last updated on 22/Jul/23

sir you didnot reply

$${sir}\:{you}\:{didnot}\:{reply} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com