Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 193199 by mnjuly1970 last updated on 07/Jun/23

     a_1  , a_2  ,...,a_n  are  mutually distinct    and is a    am  sequence .     if a_( 1)  +a_( 2)  +...+a_n  =A     and       a_1 ^( 2)  + a_2 ^2  +..+ a_n ^( 2) = B      find  the  am  sequence.

$$ \\ $$$$\:\:\:{a}_{\mathrm{1}} \:,\:{a}_{\mathrm{2}} \:,...,{a}_{{n}} \:{are}\:\:{mutually}\:{distinct} \\ $$$$\:\:{and}\:{is}\:{a}\:\:\:\:{am}\:\:{sequence}\:. \\ $$$$\:\:\:{if}\:{a}_{\:\mathrm{1}} \:+{a}_{\:\mathrm{2}} \:+...+{a}_{{n}} \:={A} \\ $$$$\:\:\:{and}\:\: \\ $$$$\:\:\:{a}_{\mathrm{1}} ^{\:\mathrm{2}} \:+\:{a}_{\mathrm{2}} ^{\mathrm{2}} \:+..+\:{a}_{{n}} ^{\:\mathrm{2}} =\:{B} \\ $$$$\:\:\:\:{find}\:\:{the}\:\:{am}\:\:{sequence}. \\ $$

Answered by MM42 last updated on 07/Jun/23

let  x_1 =a  &  x_i −x_(i−1) =d  ⇒A=na+((n(n−1)d)/2) ⇒ (A^2 /n)=na^2 +n(n−1)ad+((n(n−1)^2 d^2 )/4)  (i)  x_i ^2 =(a+(i−1)d)^2 =a^2 +2ad(i−1)+(i−1)^2 d^2   ⇒Σ_(i=1) ^n x_i ^2 =na^2 +adn(n−1)+((n(n−1)(2n−1))/6)d^2   (ii)  (ii)−(i)⇒ ((nB−A^2 )/n)=((n(n^2 −1))/(12)) d^2   ⇒d=±((2(√(3(nB−A^2 ))))/(n(√(n^2 −1))))  ✓

$${let}\:\:{x}_{\mathrm{1}} ={a}\:\:\&\:\:{x}_{{i}} −{x}_{{i}−\mathrm{1}} ={d} \\ $$$$\Rightarrow{A}={na}+\frac{{n}\left({n}−\mathrm{1}\right){d}}{\mathrm{2}}\:\Rightarrow\:\frac{{A}^{\mathrm{2}} }{{n}}={na}^{\mathrm{2}} +{n}\left({n}−\mathrm{1}\right){ad}+\frac{{n}\left({n}−\mathrm{1}\right)^{\mathrm{2}} {d}^{\mathrm{2}} }{\mathrm{4}}\:\:\left({i}\right) \\ $$$${x}_{{i}} ^{\mathrm{2}} =\left({a}+\left({i}−\mathrm{1}\right){d}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} +\mathrm{2}{ad}\left({i}−\mathrm{1}\right)+\left({i}−\mathrm{1}\right)^{\mathrm{2}} {d}^{\mathrm{2}} \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{x}_{{i}} ^{\mathrm{2}} ={na}^{\mathrm{2}} +{adn}\left({n}−\mathrm{1}\right)+\frac{{n}\left({n}−\mathrm{1}\right)\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{6}}{d}^{\mathrm{2}} \:\:\left({ii}\right) \\ $$$$\left({ii}\right)−\left({i}\right)\Rightarrow\:\frac{{nB}−{A}^{\mathrm{2}} }{{n}}=\frac{{n}\left({n}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{12}}\:{d}^{\mathrm{2}} \\ $$$$\Rightarrow{d}=\pm\frac{\mathrm{2}\sqrt{\mathrm{3}\left({nB}−{A}^{\mathrm{2}} \right)}}{{n}\sqrt{{n}^{\mathrm{2}} −\mathrm{1}}}\:\:\checkmark\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com