Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 6609 by Temp last updated on 05/Jul/16

You have a 1x1 cm square. If you pick  two random points inside the square,  what is the average distance between  those points?

$$\mathrm{You}\:\mathrm{have}\:\mathrm{a}\:\mathrm{1x1}\:\mathrm{cm}\:\mathrm{square}.\:\mathrm{If}\:\mathrm{you}\:\mathrm{pick} \\ $$$$\mathrm{two}\:\mathrm{random}\:\mathrm{points}\:\mathrm{inside}\:\mathrm{the}\:\mathrm{square}, \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{average}\:\mathrm{distance}\:\mathrm{between} \\ $$$$\mathrm{those}\:\mathrm{points}? \\ $$

Commented by prakash jain last updated on 05/Jul/16

Let X and Y be two random variable.  f_X (x) and f_Y (y) are probability density function  of X and Y.     In the above case we can assume uniform.  We define a new random variable  Z=(√(X^2 +Y^2 ))  Then mean value of Z will be given by:  E(Z)=∫Zf_Z (z)dz  We need to find f_Z (z) from f_X  and f_Y .  will continue to find f_Z (z)

$$\mathrm{Let}\:{X}\:\mathrm{and}\:{Y}\:\mathrm{be}\:\mathrm{two}\:\mathrm{random}\:\mathrm{variable}. \\ $$$${f}_{{X}} \left({x}\right)\:\mathrm{and}\:{f}_{{Y}} \left({y}\right)\:\mathrm{are}\:\mathrm{probability}\:\mathrm{density}\:\mathrm{function} \\ $$$$\mathrm{of}\:\mathrm{X}\:\mathrm{and}\:\mathrm{Y}.\: \\ $$$$ \\ $$$$\mathrm{In}\:\mathrm{the}\:\mathrm{above}\:\mathrm{case}\:\mathrm{we}\:\mathrm{can}\:\mathrm{assume}\:\mathrm{uniform}. \\ $$$$\mathrm{We}\:\mathrm{define}\:\mathrm{a}\:\mathrm{new}\:\mathrm{random}\:\mathrm{variable} \\ $$$${Z}=\sqrt{{X}^{\mathrm{2}} +{Y}^{\mathrm{2}} } \\ $$$$\mathrm{Then}\:\mathrm{mean}\:\mathrm{value}\:\mathrm{of}\:{Z}\:\mathrm{will}\:\mathrm{be}\:\mathrm{given}\:\mathrm{by}: \\ $$$${E}\left({Z}\right)=\int{Zf}_{{Z}} \left({z}\right){dz} \\ $$$$\mathrm{We}\:\mathrm{need}\:\mathrm{to}\:\mathrm{find}\:{f}_{{Z}} \left({z}\right)\:\mathrm{from}\:{f}_{{X}} \:\mathrm{and}\:{f}_{{Y}} . \\ $$$$\mathrm{will}\:\mathrm{continue}\:\mathrm{to}\:\mathrm{find}\:{f}_{{Z}} \left({z}\right) \\ $$

Commented by prakash jain last updated on 05/Jul/16

f_X (x)= { (1,(0≤x≤1)),(0,(elsewhere)) :}  f_Y (y)= { (1,(0≤y≤1)),(0,(elsewhere)) :}  for uniform density

$${f}_{{X}} \left({x}\right)=\begin{cases}{\mathrm{1}}&{\mathrm{0}\leqslant{x}\leqslant\mathrm{1}}\\{\mathrm{0}}&{{elsewhere}}\end{cases} \\ $$$${f}_{{Y}} \left({y}\right)=\begin{cases}{\mathrm{1}}&{\mathrm{0}\leqslant{y}\leqslant\mathrm{1}}\\{\mathrm{0}}&{{elsewhere}}\end{cases} \\ $$$$\mathrm{for}\:\mathrm{uniform}\:\mathrm{density} \\ $$

Commented by prakash jain last updated on 05/Jul/16

Since X and Y are independent variable  we can write joint probablity distribution  as  f_(XY) (x,y)=f_X (x)∙f_Y (y)  Expected value of distance  z=g(x,y)=(√(x^2 +y^2 ))  E(g(x,y))=∫_(−∞) ^∞ ∫_(−∞) ^∞ (√(x^2 +y^2 ))f_X (x)f_Y (y)dxdy  =∫_0 ^1 ∫_0 ^1 (√(x^2 +y^2 ))dxdy=(1/2)((√2)+sinh^(−1) 1)  Please check. I am not 100% sure.

$$\mathrm{Since}\:{X}\:\mathrm{and}\:{Y}\:\mathrm{are}\:\mathrm{independent}\:\mathrm{variable} \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{write}\:\mathrm{joint}\:\mathrm{probablity}\:\mathrm{distribution} \\ $$$$\mathrm{as} \\ $$$${f}_{{XY}} \left({x},{y}\right)={f}_{{X}} \left({x}\right)\centerdot{f}_{{Y}} \left({y}\right) \\ $$$$\mathrm{Expected}\:\mathrm{value}\:\mathrm{of}\:\mathrm{distance} \\ $$$${z}={g}\left({x},{y}\right)=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$${E}\left({g}\left({x},{y}\right)\right)=\int_{−\infty} ^{\infty} \int_{−\infty} ^{\infty} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{f}_{{X}} \left({x}\right){f}_{{Y}} \left({y}\right){dxdy} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{dxdy}=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\mathrm{2}}+\mathrm{sinh}^{−\mathrm{1}} \mathrm{1}\right) \\ $$$$\mathrm{Please}\:\mathrm{check}.\:\mathrm{I}\:\mathrm{am}\:\mathrm{not}\:\mathrm{100\%}\:\mathrm{sure}. \\ $$

Commented by Temp last updated on 05/Jul/16

What if you integrate for polar coordinates  over half of the square, and double the  integral?    y=rsinθ  x=rcosθ  etc...

$$\mathrm{What}\:\mathrm{if}\:\mathrm{you}\:\mathrm{integrate}\:\mathrm{for}\:\mathrm{polar}\:\mathrm{coordinates} \\ $$$$\mathrm{over}\:\mathrm{half}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square},\:\mathrm{and}\:\mathrm{double}\:\mathrm{the} \\ $$$$\mathrm{integral}? \\ $$$$ \\ $$$${y}={r}\mathrm{sin}\theta \\ $$$${x}={r}\mathrm{cos}\theta \\ $$$${etc}... \\ $$

Commented by prakash jain last updated on 07/Jul/16

If we tranform to polar the limits for r  will dependent on θ.  For half square (triangle)  r=1/cos θ  =∫_0 ^( π/4) ∫_1 ^( 1/cos θ) r^2 drdθ

$$\mathrm{If}\:\mathrm{we}\:\mathrm{tranform}\:\mathrm{to}\:\mathrm{polar}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{for}\:{r} \\ $$$$\mathrm{will}\:\mathrm{dependent}\:\mathrm{on}\:\theta. \\ $$$$\mathrm{For}\:\mathrm{half}\:\mathrm{square}\:\left(\mathrm{triangle}\right) \\ $$$${r}=\mathrm{1}/\mathrm{cos}\:\theta \\ $$$$=\int_{\mathrm{0}} ^{\:\pi/\mathrm{4}} \int_{\mathrm{1}} ^{\:\mathrm{1}/\mathrm{cos}\:\theta} {r}^{\mathrm{2}} {drd}\theta \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com