Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 59305 by pete last updated on 07/May/19

Witthout using mathematical tables or  calculator, find,in surdform(radicals)  , the value tan22.5°

$$\mathrm{Witthout}\:\mathrm{using}\:\mathrm{mathematical}\:\mathrm{tables}\:\mathrm{or} \\ $$$$\mathrm{calculator},\:\mathrm{find},\mathrm{in}\:\mathrm{surdform}\left(\mathrm{radicals}\right) \\ $$$$,\:\mathrm{the}\:\mathrm{value}\:\mathrm{tan22}.\mathrm{5}° \\ $$

Answered by ajfour last updated on 07/May/19

tan 2θ=((2tan θ)/(1−tan^2 θ))  let  θ=22.5°    ,tan θ= tan 22.5°= q  ⇒   1=((2q)/(1−q^2 ))  ⇒  q^2 +2q+1=2  ⇒   q= (√2)−1 .

$$\mathrm{tan}\:\mathrm{2}\theta=\frac{\mathrm{2tan}\:\theta}{\mathrm{1}−\mathrm{tan}\:^{\mathrm{2}} \theta} \\ $$$$\mathrm{let}\:\:\theta=\mathrm{22}.\mathrm{5}°\:\:\:\:,\mathrm{tan}\:\theta=\:\mathrm{tan}\:\mathrm{22}.\mathrm{5}°=\:\mathrm{q} \\ $$$$\Rightarrow\:\:\:\mathrm{1}=\frac{\mathrm{2q}}{\mathrm{1}−\mathrm{q}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\:\mathrm{q}^{\mathrm{2}} +\mathrm{2q}+\mathrm{1}=\mathrm{2} \\ $$$$\Rightarrow\:\:\:\mathrm{q}=\:\sqrt{\mathrm{2}}−\mathrm{1}\:. \\ $$

Commented by pete last updated on 08/May/19

thanks sir

$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Answered by malwaan last updated on 08/May/19

tan(θ/2)=±(√((1−cosθ)/(1+sinθ)))  tan22.5=tan((45)/2)=+(√((1−cos 45^° )/(1+cos 45^° )))  (√((1−((√2)/2))/(1+((√2)/2))))=(√((2−(√2))/(2+(√2))))  =(√(((2−(√2))^2 )/(4−2)))=((2−(√2))/(√2))  =((2(√2)−2)/2)=(√2)−1

$${tan}\frac{\theta}{\mathrm{2}}=\pm\sqrt{\frac{\mathrm{1}−{cos}\theta}{\mathrm{1}+{sin}\theta}} \\ $$$${tan}\mathrm{22}.\mathrm{5}={tan}\frac{\mathrm{45}}{\mathrm{2}}=+\sqrt{\frac{\mathrm{1}−{cos}\:\mathrm{45}^{°} }{\mathrm{1}+{cos}\:\mathrm{45}^{°} }} \\ $$$$\sqrt{\frac{\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}{\mathrm{1}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}}=\sqrt{\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{2}}}} \\ $$$$=\sqrt{\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} }{\mathrm{4}−\mathrm{2}}}=\frac{\mathrm{2}−\sqrt{\mathrm{2}}}{\sqrt{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}}{\mathrm{2}}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$

Commented by pete last updated on 11/May/19

Thank you boss

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{boss} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com