Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 183535 by HeferH last updated on 26/Dec/22

Who is greater? 70^(71)  or  71^(70)

$${Who}\:{is}\:{greater}?\:\mathrm{70}^{\mathrm{71}} \:{or}\:\:\mathrm{71}^{\mathrm{70}} \\ $$

Answered by Frix last updated on 26/Dec/22

1^2 <2^1   2^3 <3^2   ===  3^4 >4^3   4^5 >5^4   ...  n^(n+1) >(n+1)^n ∀n≥3

$$\mathrm{1}^{\mathrm{2}} <\mathrm{2}^{\mathrm{1}} \\ $$$$\mathrm{2}^{\mathrm{3}} <\mathrm{3}^{\mathrm{2}} \\ $$$$=== \\ $$$$\mathrm{3}^{\mathrm{4}} >\mathrm{4}^{\mathrm{3}} \\ $$$$\mathrm{4}^{\mathrm{5}} >\mathrm{5}^{\mathrm{4}} \\ $$$$... \\ $$$${n}^{{n}+\mathrm{1}} >\left({n}+\mathrm{1}\right)^{{n}} \forall{n}\geqslant\mathrm{3} \\ $$

Commented by HeferH last updated on 26/Dec/22

thanks :)

$$\left.{thanks}\::\right) \\ $$

Answered by mr W last updated on 26/Dec/22

f(x)=x^(1/x) =e^((ln x)/x)   f′(x)=x^(1/x) (((1−ln x)/x^2 ))  we see for x>e, f′(x)<0, that means  f(x) is strictly decreasing for x>e,  i.e. 3^(1/3) >4^(1/4) >5^(1/5) >...  70^(1/(70)) >71^(1/(71))   70^((71)/(70)) >71  ⇒70^(71) >71^(70)     similarly you can also get e.g.  100^(200) >200^(100)

$${f}\left({x}\right)={x}^{\frac{\mathrm{1}}{{x}}} ={e}^{\frac{\mathrm{ln}\:{x}}{{x}}} \\ $$$${f}'\left({x}\right)={x}^{\frac{\mathrm{1}}{{x}}} \left(\frac{\mathrm{1}−\mathrm{ln}\:{x}}{{x}^{\mathrm{2}} }\right) \\ $$$${we}\:{see}\:{for}\:{x}>{e},\:{f}'\left({x}\right)<\mathrm{0},\:{that}\:{means} \\ $$$${f}\left({x}\right)\:{is}\:{strictly}\:{decreasing}\:{for}\:{x}>{e}, \\ $$$${i}.{e}.\:\mathrm{3}^{\frac{\mathrm{1}}{\mathrm{3}}} >\mathrm{4}^{\frac{\mathrm{1}}{\mathrm{4}}} >\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{5}}} >... \\ $$$$\mathrm{70}^{\frac{\mathrm{1}}{\mathrm{70}}} >\mathrm{71}^{\frac{\mathrm{1}}{\mathrm{71}}} \\ $$$$\mathrm{70}^{\frac{\mathrm{71}}{\mathrm{70}}} >\mathrm{71} \\ $$$$\Rightarrow\mathrm{70}^{\mathrm{71}} >\mathrm{71}^{\mathrm{70}} \\ $$$$ \\ $$$${similarly}\:{you}\:{can}\:{also}\:{get}\:{e}.{g}. \\ $$$$\mathrm{100}^{\mathrm{200}} >\mathrm{200}^{\mathrm{100}} \\ $$

Commented by HeferH last updated on 26/Dec/22

thanks !

$${thanks}\:! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com