Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 40474 by KMA last updated on 22/Jul/18

When x^7 −97x^6 −199x^5 +99x^4 −  2x+190 is divided by x−99 find   the remainder.

$${When}\:{x}^{\mathrm{7}} −\mathrm{97}{x}^{\mathrm{6}} −\mathrm{199}{x}^{\mathrm{5}} +\mathrm{99}{x}^{\mathrm{4}} − \\ $$$$\mathrm{2}{x}+\mathrm{190}\:{is}\:{divided}\:{by}\:{x}−\mathrm{99}\:{find}\: \\ $$$${the}\:{remainder}. \\ $$

Answered by $@ty@m last updated on 22/Jul/18

Commented by $@ty@m last updated on 22/Jul/18

Answered by math1967 last updated on 22/Jul/18

f(x)=x^6 (x−99)−2x^5 (x−99)−x^4 (x−99)  −2(x−99)−8  ∴f(99)=0−8=−8 ans

$${f}\left({x}\right)={x}^{\mathrm{6}} \left({x}−\mathrm{99}\right)−\mathrm{2}{x}^{\mathrm{5}} \left({x}−\mathrm{99}\right)−{x}^{\mathrm{4}} \left({x}−\mathrm{99}\right) \\ $$$$−\mathrm{2}\left({x}−\mathrm{99}\right)−\mathrm{8} \\ $$$$\therefore{f}\left(\mathrm{99}\right)=\mathrm{0}−\mathrm{8}=−\mathrm{8}\:{ans} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com