Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 68495 by Maclaurin Stickker last updated on 12/Sep/19

Whats is the value of sin (6°)?

$$\mathrm{Whats}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{sin}\:\left(\mathrm{6}°\right)? \\ $$

Commented by Pk1167156@gmail.com last updated on 12/Sep/19

soln  sin6°  =sin(36−30)  =sin36°cos30°−cos36°sin30°  =((√(10−2(√5)))/4)×((√3)/2)−(((√5)+1)/4)×(1/2)  =((√(30−6(√5)))/8)−((√(5+1))/8)  =(((√(30−6(√5)))−((√5)+1))/8)

$$\mathrm{soln} \\ $$$$\mathrm{sin6}° \\ $$$$=\mathrm{sin}\left(\mathrm{36}−\mathrm{30}\right) \\ $$$$=\mathrm{sin36}°\mathrm{cos30}°−\mathrm{cos36}°\mathrm{sin30}° \\ $$$$=\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{\sqrt{\mathrm{30}−\mathrm{6}\sqrt{\mathrm{5}}}}{\mathrm{8}}−\frac{\sqrt{\mathrm{5}+\mathrm{1}}}{\mathrm{8}} \\ $$$$=\frac{\sqrt{\mathrm{30}−\mathrm{6}\sqrt{\mathrm{5}}}−\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)}{\mathrm{8}} \\ $$

Answered by MJS last updated on 12/Sep/19

we can calculate sin 15° by using the formula  sin (x/2) =(√((1−cos x)/2)) with x=30° ⇒  ⇒ sin 15° =(((√6)−(√2))/4); cos 15° =(((√6)+(√2))/4)  sin 18° =cos 72° is known from the regular  pentagon  sin 18° =(((√5)−1)/4); cos 18° =((√(10+2(√5)))/4)  now  sin 3° =sin (18°−15°) =sin 18° cos 15° −cos 18° sin 15° =  =((2(1−(√3))(√(5+(√5)))−(1−(√5))(1+(√3))(√2))/(16))  cos 3° =(√(1−sin^2  3°))  sin 6° =sin 2×3° =2sin 3° cos 3° =  ...  =((√(9−(√5)−(√(30+6(√5)))))/4)≈.104528

$$\mathrm{we}\:\mathrm{can}\:\mathrm{calculate}\:\mathrm{sin}\:\mathrm{15}°\:\mathrm{by}\:\mathrm{using}\:\mathrm{the}\:\mathrm{formula} \\ $$$$\mathrm{sin}\:\frac{{x}}{\mathrm{2}}\:=\sqrt{\frac{\mathrm{1}−\mathrm{cos}\:{x}}{\mathrm{2}}}\:\mathrm{with}\:{x}=\mathrm{30}°\:\Rightarrow \\ $$$$\Rightarrow\:\mathrm{sin}\:\mathrm{15}°\:=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{2}}}{\mathrm{4}};\:\mathrm{cos}\:\mathrm{15}°\:=\frac{\sqrt{\mathrm{6}}+\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$$$\mathrm{sin}\:\mathrm{18}°\:=\mathrm{cos}\:\mathrm{72}°\:\mathrm{is}\:\mathrm{known}\:\mathrm{from}\:\mathrm{the}\:\mathrm{regular} \\ $$$$\mathrm{pentagon} \\ $$$$\mathrm{sin}\:\mathrm{18}°\:=\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{4}};\:\mathrm{cos}\:\mathrm{18}°\:=\frac{\sqrt{\mathrm{10}+\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}} \\ $$$$\mathrm{now} \\ $$$$\mathrm{sin}\:\mathrm{3}°\:=\mathrm{sin}\:\left(\mathrm{18}°−\mathrm{15}°\right)\:=\mathrm{sin}\:\mathrm{18}°\:\mathrm{cos}\:\mathrm{15}°\:−\mathrm{cos}\:\mathrm{18}°\:\mathrm{sin}\:\mathrm{15}°\:= \\ $$$$=\frac{\mathrm{2}\left(\mathrm{1}−\sqrt{\mathrm{3}}\right)\sqrt{\mathrm{5}+\sqrt{\mathrm{5}}}−\left(\mathrm{1}−\sqrt{\mathrm{5}}\right)\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)\sqrt{\mathrm{2}}}{\mathrm{16}} \\ $$$$\mathrm{cos}\:\mathrm{3}°\:=\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\mathrm{3}°} \\ $$$$\mathrm{sin}\:\mathrm{6}°\:=\mathrm{sin}\:\mathrm{2}×\mathrm{3}°\:=\mathrm{2sin}\:\mathrm{3}°\:\mathrm{cos}\:\mathrm{3}°\:= \\ $$$$... \\ $$$$=\frac{\sqrt{\mathrm{9}−\sqrt{\mathrm{5}}−\sqrt{\mathrm{30}+\mathrm{6}\sqrt{\mathrm{5}}}}}{\mathrm{4}}\approx.\mathrm{104528} \\ $$

Commented by MJS last updated on 12/Sep/19

generally we can give exact values for  trigonometric functions of n×3° with n∈Z

$$\mathrm{generally}\:\mathrm{we}\:\mathrm{can}\:\mathrm{give}\:\mathrm{exact}\:\mathrm{values}\:\mathrm{for} \\ $$$$\mathrm{trigonometric}\:\mathrm{functions}\:\mathrm{of}\:{n}×\mathrm{3}°\:\mathrm{with}\:{n}\in\mathbb{Z} \\ $$

Commented by Maclaurin Stickker last updated on 12/Sep/19

Thank you, sir!

$$\mathrm{Thank}\:\mathrm{you},\:\mathrm{sir}! \\ $$

Commented by malwaan last updated on 13/Sep/19

great work  thank you ♥

$$\boldsymbol{{great}}\:\boldsymbol{{work}} \\ $$$$\boldsymbol{{thank}}\:\boldsymbol{{you}}\:\heartsuit \\ $$

Commented by Maclaurin Stickker last updated on 12/Sep/19

Or we can use the arc subtraction sin(6°)=sin(36°−30°)⇒sin(36°)cos(30°)−sin(30°)cos(36°)⇒((√(10−2(√5)))/4)×((√3)/2)−(1/2)×(((√5)+1)/4)⇒(((√(30−6(√5)))−(√5)−1)/8)=0.104528∙∙∙

$$\mathrm{Or}\:\mathrm{we}\:\mathrm{can}\:\mathrm{use}\:\mathrm{the}\:\mathrm{arc}\:\mathrm{subtraction}\:\mathrm{sin}\left(\mathrm{6}°\right)=\mathrm{sin}\left(\mathrm{36}°−\mathrm{30}°\right)\Rightarrow\mathrm{sin}\left(\mathrm{36}°\right)\mathrm{cos}\left(\mathrm{30}°\right)−\mathrm{sin}\left(\mathrm{30}°\right)\mathrm{cos}\left(\mathrm{36}°\right)\Rightarrow\frac{\sqrt{\mathrm{10}−\mathrm{2}\sqrt{\mathrm{5}}}}{\mathrm{4}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}×\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{4}}\Rightarrow\frac{\sqrt{\mathrm{30}−\mathrm{6}\sqrt{\mathrm{5}}}−\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{8}}=\mathrm{0}.\mathrm{104528}\centerdot\centerdot\centerdot \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com