Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 116301 by harckinwunmy last updated on 02/Oct/20

What is the condition for a  given line to    1) intersect a curve  2) be a tangent to a curve  3) not to intersect a curve

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{for}\:\mathrm{a} \\ $$$$\mathrm{given}\:\mathrm{line}\:\mathrm{to}\:\: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{intersect}\:\mathrm{a}\:\mathrm{curve} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{a}\:\mathrm{curve} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{not}\:\mathrm{to}\:\mathrm{intersect}\:\mathrm{a}\:\mathrm{curve}\: \\ $$

Answered by Rio Michael last updated on 02/Oct/20

(1) b^2 −4ac > 0  (2) b^2 −4ac = 0  (3) b^2 −4ac < 0

$$\left(\mathrm{1}\right)\:{b}^{\mathrm{2}} −\mathrm{4}{ac}\:>\:\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:{b}^{\mathrm{2}} −\mathrm{4}{ac}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{3}\right)\:{b}^{\mathrm{2}} −\mathrm{4}{ac}\:<\:\mathrm{0} \\ $$

Answered by mr W last updated on 02/Oct/20

say the line is y=ax+b  the curve is y=f(x)  (1)  if f(x)−ax−b=0 has at least one  real root, say the roots are r_i , and   f ′(r_i )≠a    (2)  as (1) but f ′(r_i )=a    (3)  if g(x)−ax−b=0 has no real root.

$${say}\:{the}\:{line}\:{is}\:{y}={ax}+{b} \\ $$$${the}\:{curve}\:{is}\:{y}={f}\left({x}\right) \\ $$$$\left(\mathrm{1}\right) \\ $$$${if}\:{f}\left({x}\right)−{ax}−{b}=\mathrm{0}\:{has}\:{at}\:{least}\:{one} \\ $$$${real}\:{root},\:{say}\:{the}\:{roots}\:{are}\:{r}_{{i}} ,\:{and}\: \\ $$$${f}\:'\left({r}_{{i}} \right)\neq{a} \\ $$$$ \\ $$$$\left(\mathrm{2}\right) \\ $$$${as}\:\left(\mathrm{1}\right)\:{but}\:{f}\:'\left({r}_{{i}} \right)={a} \\ $$$$ \\ $$$$\left(\mathrm{3}\right) \\ $$$${if}\:{g}\left({x}\right)−{ax}−{b}=\mathrm{0}\:{has}\:{no}\:{real}\:{root}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com