Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 114401 by bemath last updated on 19/Sep/20

What is reminder when 4^(29)   divided by 17

$${What}\:{is}\:{reminder}\:{when}\:\mathrm{4}^{\mathrm{29}} \\ $$$${divided}\:{by}\:\mathrm{17} \\ $$

Answered by bobhans last updated on 19/Sep/20

because 16 = 4^2 ≡ −1 (mod 17 )  we have 4^4 ≡ (4^2 )^2  ≡ (−1)^2  ≡ 1 (mod 17)  so we obtain 4^(29)  ≡ (4^4 )^7 .4 ≡ 1.4 ≡ 4 (mod 17)  hence the remainder of 4^(29)  upon   division by 17 is equal to 4.

$${because}\:\mathrm{16}\:=\:\mathrm{4}^{\mathrm{2}} \equiv\:−\mathrm{1}\:\left({mod}\:\mathrm{17}\:\right) \\ $$$${we}\:{have}\:\mathrm{4}^{\mathrm{4}} \equiv\:\left(\mathrm{4}^{\mathrm{2}} \right)^{\mathrm{2}} \:\equiv\:\left(−\mathrm{1}\right)^{\mathrm{2}} \:\equiv\:\mathrm{1}\:\left({mod}\:\mathrm{17}\right) \\ $$$${so}\:{we}\:{obtain}\:\mathrm{4}^{\mathrm{29}} \:\equiv\:\left(\mathrm{4}^{\mathrm{4}} \right)^{\mathrm{7}} .\mathrm{4}\:\equiv\:\mathrm{1}.\mathrm{4}\:\equiv\:\mathrm{4}\:\left({mod}\:\mathrm{17}\right) \\ $$$${hence}\:{the}\:{remainder}\:{of}\:\mathrm{4}^{\mathrm{29}} \:{upon}\: \\ $$$${division}\:{by}\:\mathrm{17}\:{is}\:{equal}\:{to}\:\mathrm{4}. \\ $$

Commented by bemath last updated on 19/Sep/20

gave kudos ✓♠

$${gave}\:{kudos}\:\checkmark\spadesuit \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com