Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 30429 by NECx last updated on 22/Feb/18

What are the conditions for using  L′hospital rule?

$${What}\:{are}\:{the}\:{conditions}\:{for}\:{using} \\ $$$${L}'{hospital}\:{rule}? \\ $$

Commented by prof Abdo imad last updated on 22/Feb/18

if f and g are n derivable at point x_0  with  f(x_0 )=f^, (x_0 )=...=f^((n−1)) (x_0 )=0 and f^((n)) (x_0 )≠0  also g(x_0 )=g^′ (x_0 )=...=g^((n−1)) (x_0 )=0 and g^((n)) (x_0 )≠0  so lim_(x→x_0 )   ((f(x))/(g(x)))= ((f^((n)) (x_0 ))/(g^((n)) (x_0 ))) .

$${if}\:{f}\:{and}\:{g}\:{are}\:{n}\:{derivable}\:{at}\:{point}\:{x}_{\mathrm{0}} \:{with} \\ $$$${f}\left({x}_{\mathrm{0}} \right)={f}^{,} \left({x}_{\mathrm{0}} \right)=...={f}^{\left({n}−\mathrm{1}\right)} \left({x}_{\mathrm{0}} \right)=\mathrm{0}\:{and}\:{f}^{\left({n}\right)} \left({x}_{\mathrm{0}} \right)\neq\mathrm{0} \\ $$$${also}\:{g}\left({x}_{\mathrm{0}} \right)={g}^{'} \left({x}_{\mathrm{0}} \right)=...={g}^{\left({n}−\mathrm{1}\right)} \left({x}_{\mathrm{0}} \right)=\mathrm{0}\:{and}\:{g}^{\left({n}\right)} \left({x}_{\mathrm{0}} \right)\neq\mathrm{0} \\ $$$${so}\:{lim}_{{x}\rightarrow{x}_{\mathrm{0}} } \:\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}=\:\frac{{f}^{\left({n}\right)} \left({x}_{\mathrm{0}} \right)}{{g}^{\left({n}\right)} \left({x}_{\mathrm{0}} \right)}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com