Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 101510 by bemath last updated on 03/Jul/20

What are all critical point  for f(x,y) = 2x^2 −y^3 −2xy

$$\mathrm{What}\:\mathrm{are}\:\mathrm{all}\:\mathrm{critical}\:\mathrm{point} \\ $$$$\mathrm{for}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\:\mathrm{2x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{3}} −\mathrm{2xy} \\ $$

Commented by bramlex last updated on 03/Jul/20

(1)(∂f/∂x) = 4x−2y=0 , y = 2x  (2) (∂f/∂y) = −3y^2 −2x= 0 , 2x=−3y^2   (3) ⇒2y = 2(−3y^2 ) ; 3y^2 +y = 0  y(3y+1)=0 → { ((y_1 =0 ∧x_1 = 0)),((y_2  = −(1/3) ∧x_2  = −(1/6))) :}  so critical point are (0,0) & (−(1/6), −(1/3)) ▲

$$\left(\mathrm{1}\right)\frac{\partial\mathrm{f}}{\partial\mathrm{x}}\:=\:\mathrm{4x}−\mathrm{2y}=\mathrm{0}\:,\:\mathrm{y}\:=\:\mathrm{2x} \\ $$$$\left(\mathrm{2}\right)\:\frac{\partial\mathrm{f}}{\partial\mathrm{y}}\:=\:−\mathrm{3y}^{\mathrm{2}} −\mathrm{2x}=\:\mathrm{0}\:,\:\mathrm{2x}=−\mathrm{3y}^{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\Rightarrow\mathrm{2y}\:=\:\mathrm{2}\left(−\mathrm{3y}^{\mathrm{2}} \right)\:;\:\mathrm{3y}^{\mathrm{2}} +\mathrm{y}\:=\:\mathrm{0} \\ $$$$\mathrm{y}\left(\mathrm{3y}+\mathrm{1}\right)=\mathrm{0}\:\rightarrow\begin{cases}{\mathrm{y}_{\mathrm{1}} =\mathrm{0}\:\wedge\mathrm{x}_{\mathrm{1}} =\:\mathrm{0}}\\{\mathrm{y}_{\mathrm{2}} \:=\:−\frac{\mathrm{1}}{\mathrm{3}}\:\wedge\mathrm{x}_{\mathrm{2}} \:=\:−\frac{\mathrm{1}}{\mathrm{6}}}\end{cases} \\ $$$$\mathrm{so}\:\mathrm{critical}\:\mathrm{point}\:\mathrm{are}\:\left(\mathrm{0},\mathrm{0}\right)\:\&\:\left(−\frac{\mathrm{1}}{\mathrm{6}},\:−\frac{\mathrm{1}}{\mathrm{3}}\right)\:\blacktriangle \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com