Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 197640 by Mastermind last updated on 25/Sep/23

Water is leaking from a hemispheric  bowl of radius 20cm at the rate of   0.5cm^3 /s. Find the rate at which surface  area of the water decreasing when the  water level is halfway from the top.    Thank you

$${Water}\:{is}\:{leaking}\:{from}\:{a}\:{hemispheric} \\ $$$${bowl}\:{of}\:{radius}\:\mathrm{20}{cm}\:{at}\:{the}\:{rate}\:{of}\: \\ $$$$\mathrm{0}.\mathrm{5}{cm}^{\mathrm{3}} /{s}.\:{Find}\:{the}\:{rate}\:{at}\:{which}\:{surface} \\ $$$${area}\:{of}\:{the}\:{water}\:{decreasing}\:{when}\:{the} \\ $$$${water}\:{level}\:{is}\:{halfway}\:{from}\:{the}\:{top}. \\ $$$$ \\ $$$${Thank}\:{you} \\ $$

Answered by mr W last updated on 25/Sep/23

Commented by mr W last updated on 25/Sep/23

volume of water V=πh^2 (R−(h/3))  (dV/dt)=πh(2R−h)(dh/dt)  ⇒(dh/dt)=(1/(πh(2R−h)))×(dV/dt)  at h=(R/2):  (dh/dt)=(4/(3πR^2 ))×(dV/dt)=(4/(3π×20^2 ))×(−0.5)       =−0.00053 cm/s

$${volume}\:{of}\:{water}\:{V}=\pi{h}^{\mathrm{2}} \left({R}−\frac{{h}}{\mathrm{3}}\right) \\ $$$$\frac{{dV}}{{dt}}=\pi{h}\left(\mathrm{2}{R}−{h}\right)\frac{{dh}}{{dt}} \\ $$$$\Rightarrow\frac{{dh}}{{dt}}=\frac{\mathrm{1}}{\pi{h}\left(\mathrm{2}{R}−{h}\right)}×\frac{{dV}}{{dt}} \\ $$$${at}\:{h}=\frac{{R}}{\mathrm{2}}: \\ $$$$\frac{{dh}}{{dt}}=\frac{\mathrm{4}}{\mathrm{3}\pi{R}^{\mathrm{2}} }×\frac{{dV}}{{dt}}=\frac{\mathrm{4}}{\mathrm{3}\pi×\mathrm{20}^{\mathrm{2}} }×\left(−\mathrm{0}.\mathrm{5}\right) \\ $$$$\:\:\:\:\:=−\mathrm{0}.\mathrm{00053}\:{cm}/{s} \\ $$

Commented by Mastermind last updated on 25/Sep/23

Thank you so much

$${Thank}\:{you}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com