Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 216351 by issac last updated on 05/Feb/25

Vector field F^→ ;R^3 →R^3   F^→ (x,y,z)=xye_1 ^→ −5ye_2 ^→ −3yze_3 ^→   ∫∫_(S;x^2 +y^2 +z^2 =r^2 )   F^→ ∙dS^→ = ?

$$\mathrm{Vector}\:\mathrm{field}\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}};\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}^{\mathrm{3}} \\ $$$$\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\left({x},{y},{z}\right)={xy}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{1}} −\mathrm{5}{y}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{2}} −\mathrm{3}{yz}\overset{\rightarrow} {\boldsymbol{\mathrm{e}}}_{\mathrm{3}} \\ $$$$\underset{\mathcal{S};{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={r}^{\mathrm{2}} } {\int\int}\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}\centerdot\mathrm{d}\overset{\rightarrow} {\boldsymbol{\mathrm{S}}}=\:? \\ $$

Answered by MrGaster last updated on 06/Feb/25

▽∙F^→ =(∂/∂x)(∂y)+(∂/∂y)(−5y)+(∂/∂z)(−3yz)  =y−5−3y=−2y−5  ∫∫∫_V (−2y−5)dV  x=r sin θ cos φ,y=r sinθ sin φ,z=r cos θ  dV=r^2 sinθ dr dθ dφ  0≤r≤r,0≤θ≤π,0≤φ≤2π  ∫∫∫_V (−2y−5)dV=∫_0 ^r ∫_0 ^π ∫_0 ^(2π) (−2r sinθ φ−5)r^2  sinθ dφ dθ dr  =∫_(0 ) ^r ∫_(0 ) ^π [−2r^3 sin^2 θ∫_0 ^(2π) sinφdφ−5r^2 sinθ∫_0 ^(2π) dφ]dθ dr  ∫_0 ^r ∫_0 ^π [0−10πr^2 sinθ]dθ dr  =−10π∫_0 ^r ∫_0 ^π r^2 sinθ dθ dr  =−10π∫_0 ^r ∫_0 ^π [−r^2 cosθ]_0 ^π dr  =−10π∫_0 ^r 2r^2 dr  =−20π[(r^3 /3)]_0 ^r   = determinant (((−((20πr^3 )/3))))

$$\bigtriangledown\centerdot\overset{\rightarrow} {\boldsymbol{\mathrm{F}}}=\frac{\partial}{\partial{x}}\left(\partial{y}\right)+\frac{\partial}{\partial{y}}\left(−\mathrm{5}{y}\right)+\frac{\partial}{\partial{z}}\left(−\mathrm{3}{yz}\right) \\ $$$$={y}−\mathrm{5}−\mathrm{3}{y}=−\mathrm{2}{y}−\mathrm{5} \\ $$$$\int\int\int_{{V}} \left(−\mathrm{2}{y}−\mathrm{5}\right){dV} \\ $$$${x}={r}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\phi,{y}={r}\:\mathrm{sin}\theta\:\mathrm{sin}\:\phi,{z}={r}\:\mathrm{cos}\:\theta \\ $$$${dV}={r}^{\mathrm{2}} \mathrm{sin}\theta\:{dr}\:{d}\theta\:{d}\phi \\ $$$$\mathrm{0}\leq{r}\leq{r},\mathrm{0}\leq\theta\leq\pi,\mathrm{0}\leq\phi\leq\mathrm{2}\pi \\ $$$$\int\int\int_{{V}} \left(−\mathrm{2}{y}−\mathrm{5}\right){dV}=\int_{\mathrm{0}} ^{{r}} \int_{\mathrm{0}} ^{\pi} \int_{\mathrm{0}} ^{\mathrm{2}\pi} \left(−\mathrm{2}{r}\:\mathrm{sin}\theta\:\phi−\mathrm{5}\right){r}^{\mathrm{2}} \:\mathrm{sin}\theta\:{d}\phi\:{d}\theta\:{dr} \\ $$$$=\int_{\mathrm{0}\:} ^{{r}} \int_{\mathrm{0}\:} ^{\pi} \left[−\mathrm{2}{r}^{\mathrm{3}} \mathrm{sin}^{\mathrm{2}} \theta\int_{\mathrm{0}} ^{\mathrm{2}\pi} \mathrm{sin}\phi{d}\phi−\mathrm{5r}^{\mathrm{2}} \mathrm{sin}\theta\int_{\mathrm{0}} ^{\mathrm{2}\pi} {d}\phi\right]{d}\theta\:{dr} \\ $$$$\int_{\mathrm{0}} ^{{r}} \int_{\mathrm{0}} ^{\pi} \left[\mathrm{0}−\mathrm{10}\pi{r}^{\mathrm{2}} \mathrm{sin}\theta\right]{d}\theta\:{dr} \\ $$$$=−\mathrm{10}\pi\int_{\mathrm{0}} ^{{r}} \int_{\mathrm{0}} ^{\pi} {r}^{\mathrm{2}} \mathrm{sin}\theta\:{d}\theta\:{dr} \\ $$$$=−\mathrm{10}\pi\int_{\mathrm{0}} ^{{r}} \int_{\mathrm{0}} ^{\pi} \left[−{r}^{\mathrm{2}} \mathrm{cos}\theta\right]_{\mathrm{0}} ^{\pi} {dr} \\ $$$$=−\mathrm{10}\pi\int_{\mathrm{0}} ^{{r}} \mathrm{2}{r}^{\mathrm{2}} {dr} \\ $$$$=−\mathrm{20}\pi\left[\frac{{r}^{\mathrm{3}} }{\mathrm{3}}\right]_{\mathrm{0}} ^{{r}} \\ $$$$=\begin{array}{|c|}{−\frac{\mathrm{20}\pi{r}^{\mathrm{3}} }{\mathrm{3}}}\\\hline\end{array} \\ $$

Commented by issac last updated on 06/Feb/25

Thx! Mr Gaster you r my Hero :⟩

$$\mathrm{Thx}!\:\mathrm{Mr}\:\mathrm{Gaster}\:\mathrm{you}\:\mathrm{r}\:\mathrm{my}\:\mathrm{Hero}\::\rangle \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com