Question and Answers Forum
All Questions Topic List
VectorQuestion and Answers: Page 1
Question Number 219341 Answers: 1 Comments: 1
$$\int\frac{{dx}}{\mathrm{1}\:+\:{sin}^{\mathrm{3}} {x}\:+\:{cos}^{\mathrm{3}} {x}} \\ $$
Question Number 219262 Answers: 0 Comments: 0
$$\overset{} {\mathrm{E}lectric}\:\mathrm{field}\:\mathrm{strenth}\:\mathrm{at}\:\mathrm{any}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{space} \\ $$$$\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:\mathrm{the}\:\mathrm{force}\:\mathrm{per}\:\mathrm{unit}\:\mathrm{charge}\:\mathrm{at}\:\mathrm{that}\:\mathrm{point}. \\ $$$$\:\mathrm{It}\:\mathrm{is}\:\mathrm{a}\:\mathrm{vector}\:\mathrm{quantity}\:\mathrm{whose}\:\mathrm{magnitude}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by}\:\mathrm{Coulomb}^{\mathrm{s}\:\:} \:\mathrm{law}\:\mathrm{and}\:\mathrm{diection}\:\mathrm{is}\:\mathrm{in}\: \\ $$$$\mathrm{straight}\:\mathrm{line}\:\mathrm{loining}\:\mathrm{the}\:\mathrm{at}\:\mathrm{that}\:\mathrm{point}. \\ $$$$\mathrm{mathemstically} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 219185 Answers: 5 Comments: 0
Question Number 217079 Answers: 1 Comments: 0
$$\frac{\mathrm{6}{C}\mathrm{3}×\mathrm{4}{C}\mathrm{1}}{\mathrm{15}{C}\mathrm{4}} \\ $$$$ \\ $$
Question Number 216647 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\left({acos}^{\mathrm{2}} {x}+{bsin}^{\mathrm{2}} {x}\right)^{{n}} } \\ $$
Question Number 215418 Answers: 1 Comments: 0
Question Number 214838 Answers: 2 Comments: 3
$$ \\ $$Determine the unit Vector perpendicular in plane of A = 2i-6j-3k , B = 4i+3j-k
Question Number 214793 Answers: 4 Comments: 2
Question Number 213817 Answers: 0 Comments: 1
Question Number 212131 Answers: 0 Comments: 0
Question Number 211558 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$\:\:\:\:\:−−−−−−−−−−−− \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\Omega}=\:\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{1}}{\mathrm{3}\boldsymbol{{n}}+\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{3}\boldsymbol{{n}}+\mathrm{1}}\:\right)=\:\boldsymbol{{a}\pi} \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:\boldsymbol{{a}}^{\mathrm{2}} =\:? \\ $$$$\:\:\:\:\:\:\:−−−−−−−−−−−− \\ $$
Question Number 210927 Answers: 0 Comments: 0
Question Number 210787 Answers: 6 Comments: 0
$$ \\ $$$$\:\begin{cases}{\:\:\mathrm{I}{f},\:\mathrm{D}\::\:{x}^{\mathrm{2}} \:+{y}^{\:\mathrm{2}} \:+\:{z}^{\:\mathrm{2}} \leqslant\mathrm{1}}\\{\:\Rightarrow\int\underset{\overset{} {\mathrm{D}}} {\int}\int\frac{\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{y}^{\:\mathrm{2}} }{{x}^{\mathrm{2}} \:+\:\mathrm{4}{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\:{dxdydz}=?}\end{cases} \\ $$$$ \\ $$$$ \\ $$
Question Number 210566 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{if}\:\left(\mathrm{x}\in\right]−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\left[\:\:\mathrm{y}\:=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{x}} \frac{\mathrm{dt}}{\mathrm{cos}\left(\mathrm{t}\right)}\:\right)\:\Rightarrow\:\:\left(\mathrm{y}\in\mathrm{IR}\:\:\:\mathrm{x}\:=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{y}} \frac{\mathrm{dt}}{\mathrm{cosh}\left(\mathrm{t}\right)}\:\right) \\ $$
Question Number 208931 Answers: 1 Comments: 0
Question Number 208395 Answers: 0 Comments: 0
Question Number 208387 Answers: 0 Comments: 2
Find the value of the scalar for which the vector a = 3i + 2j is perpendicular to b = 4i - 3j
Question Number 207901 Answers: 1 Comments: 0
Question Number 206779 Answers: 2 Comments: 0
Question Number 206227 Answers: 1 Comments: 0
$${OA}=\left(\overset{{x}} {\mathrm{4}}\right)\:{OB}=_{\mathrm{7}} ^{\mathrm{5}} \:{and}\:{AB}=\mathrm{5}\:{units} \\ $$
Question Number 205820 Answers: 1 Comments: 0
$$\begin{pmatrix}{\sqrt{\mathrm{3}}}\\{\mathrm{1}}\end{pmatrix}\:\:\mathrm{and}\:\:\begin{pmatrix}{\mathrm{1}}\\{\sqrt{\mathrm{3}}}\end{pmatrix}\:\:\:\mathrm{vector}\:\mathrm{find}\:\theta=? \\ $$
Question Number 205321 Answers: 1 Comments: 0
$$\overset{\rightarrow} {{a}}=\hat {{i}}+\mathrm{3}\hat {{j}}+\mathrm{4}\hat {{k}}\:\overset{\rightarrow} {{b}}=\mathrm{2}\hat {{i}}−\mathrm{3}\hat {{j}}+\mathrm{4}\hat {{k}}\:\overset{\rightarrow} {{c}}=\mathrm{5}\hat {{i}}−\mathrm{2}\hat {{j}}+\mathrm{4}\hat {{k}}\:{given}\:{that}\:\overset{\rightarrow} {{p}}×\overset{\rightarrow} {{b}}=\overset{\rightarrow} {{b}}×\overset{\rightarrow} {{c}}\:{and}\:\overset{\rightarrow} {{p}}.\overset{\rightarrow} {{b}}=\mathrm{0}\:{then}\:{the}\:{value}\:{of}\:\overset{\rightarrow} {{p}}\left(\hat {{i}}−\hat {{j}}+\hat {{k}}\right){is} \\ $$
Question Number 205164 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}: \\ $$$$\begin{vmatrix}{\mathrm{1}−{x}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}−{x}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}−{x}}&{\ldots}&{{n}}\\{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}−{x}}\end{vmatrix} \\ $$
Question Number 205156 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}: \\ $$$$\begin{vmatrix}{\mathrm{5}}&{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}&{\ldots}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{2}}&{\mathrm{5}}&{\mathrm{3}}&{\mathrm{0}}&{\ldots}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{5}}&{\mathrm{3}}&{\ldots}&{\mathrm{0}}&{\mathrm{0}}\\{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}&{\vdots}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\ldots}&{\mathrm{5}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\ldots}&{\mathrm{2}}&{\mathrm{5}}\end{vmatrix} \\ $$
Question Number 204509 Answers: 0 Comments: 0
Question Number 203419 Answers: 0 Comments: 4
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com