Question and Answers Forum

All Questions   Topic List

VectorQuestion and Answers: Page 1

Question Number 219341    Answers: 1   Comments: 1

∫(dx/(1 + sin^3 x + cos^3 x))

$$\int\frac{{dx}}{\mathrm{1}\:+\:{sin}^{\mathrm{3}} {x}\:+\:{cos}^{\mathrm{3}} {x}} \\ $$

Question Number 219262    Answers: 0   Comments: 0

E^ lectric field strenth at any point in the space is defined as the force per unit charge at that point. It is a vector quantity whose magnitude is given by Coulomb^(s ) law and diection is in straight line loining the at that point. mathemstically

$$\overset{} {\mathrm{E}lectric}\:\mathrm{field}\:\mathrm{strenth}\:\mathrm{at}\:\mathrm{any}\:\mathrm{point}\:\mathrm{in}\:\mathrm{the}\:\mathrm{space} \\ $$$$\mathrm{is}\:\mathrm{defined}\:\mathrm{as}\:\mathrm{the}\:\mathrm{force}\:\mathrm{per}\:\mathrm{unit}\:\mathrm{charge}\:\mathrm{at}\:\mathrm{that}\:\mathrm{point}. \\ $$$$\:\mathrm{It}\:\mathrm{is}\:\mathrm{a}\:\mathrm{vector}\:\mathrm{quantity}\:\mathrm{whose}\:\mathrm{magnitude}\:\mathrm{is} \\ $$$$\mathrm{given}\:\mathrm{by}\:\mathrm{Coulomb}^{\mathrm{s}\:\:} \:\mathrm{law}\:\mathrm{and}\:\mathrm{diection}\:\mathrm{is}\:\mathrm{in}\: \\ $$$$\mathrm{straight}\:\mathrm{line}\:\mathrm{loining}\:\mathrm{the}\:\mathrm{at}\:\mathrm{that}\:\mathrm{point}. \\ $$$$\mathrm{mathemstically} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

Question Number 219185    Answers: 5   Comments: 0

Question Number 217079    Answers: 1   Comments: 0

((6C3×4C1)/(15C4))

$$\frac{\mathrm{6}{C}\mathrm{3}×\mathrm{4}{C}\mathrm{1}}{\mathrm{15}{C}\mathrm{4}} \\ $$$$ \\ $$

Question Number 216647    Answers: 0   Comments: 0

∫_0 ^(π/2) (dx/((acos^2 x+bsin^2 x)^n ))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\left({acos}^{\mathrm{2}} {x}+{bsin}^{\mathrm{2}} {x}\right)^{{n}} } \\ $$

Question Number 215418    Answers: 1   Comments: 0

Question Number 214838    Answers: 2   Comments: 3

Determine the unit Vector perpendicular in plane of A = 2i-6j-3k , B = 4i+3j-k

$$ \\ $$Determine the unit Vector perpendicular in plane of A = 2i-6j-3k , B = 4i+3j-k

Question Number 214793    Answers: 4   Comments: 2

Question Number 213817    Answers: 0   Comments: 1

Question Number 212131    Answers: 0   Comments: 0

Question Number 211558    Answers: 1   Comments: 0

−−−−−−−−−−−− 𝛀= Σ_(n=0) ^∞ ((1/(3n+2)) −(1/(3n+1)) )= a𝛑 ⇒ a^2 = ? −−−−−−−−−−−−

$$ \\ $$$$ \\ $$$$\:\:\:\:\:−−−−−−−−−−−− \\ $$$$\:\:\:\:\:\:\:\boldsymbol{\Omega}=\:\underset{\boldsymbol{{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(\frac{\mathrm{1}}{\mathrm{3}\boldsymbol{{n}}+\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{3}\boldsymbol{{n}}+\mathrm{1}}\:\right)=\:\boldsymbol{{a}\pi} \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\:\boldsymbol{{a}}^{\mathrm{2}} =\:? \\ $$$$\:\:\:\:\:\:\:−−−−−−−−−−−− \\ $$

Question Number 210927    Answers: 0   Comments: 0

Question Number 210787    Answers: 6   Comments: 0

{ (( If, D : x^2 +y^( 2) + z^( 2) ≤1)),(( ⇒∫∫_D^ ∫(( x^2 + 2y^( 2) )/(x^2 + 4y^2 +z^2 )) dxdydz=?)) :}

$$ \\ $$$$\:\begin{cases}{\:\:\mathrm{I}{f},\:\mathrm{D}\::\:{x}^{\mathrm{2}} \:+{y}^{\:\mathrm{2}} \:+\:{z}^{\:\mathrm{2}} \leqslant\mathrm{1}}\\{\:\Rightarrow\int\underset{\overset{} {\mathrm{D}}} {\int}\int\frac{\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{y}^{\:\mathrm{2}} }{{x}^{\mathrm{2}} \:+\:\mathrm{4}{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }\:{dxdydz}=?}\end{cases} \\ $$$$ \\ $$$$ \\ $$

Question Number 210566    Answers: 1   Comments: 0

Prove that: if (x∈]−(π/2),(π/2)[ y =∫^( x) _( 0) (dt/(cos(t))) ) ⇒ (y∈IR x =∫^( y) _( 0) (dt/(cosh(t))) )

$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{if}\:\left(\mathrm{x}\in\right]−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\left[\:\:\mathrm{y}\:=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{x}} \frac{\mathrm{dt}}{\mathrm{cos}\left(\mathrm{t}\right)}\:\right)\:\Rightarrow\:\:\left(\mathrm{y}\in\mathrm{IR}\:\:\:\mathrm{x}\:=\underset{\:\mathrm{0}} {\int}^{\:\mathrm{y}} \frac{\mathrm{dt}}{\mathrm{cosh}\left(\mathrm{t}\right)}\:\right) \\ $$

Question Number 208931    Answers: 1   Comments: 0

Question Number 208395    Answers: 0   Comments: 0

Question Number 208387    Answers: 0   Comments: 2

Find the value of the scalar for which the vector a = 3i + 2j is perpendicular to b = 4i - 3j

Find the value of the scalar for which the vector a = 3i + 2j is perpendicular to b = 4i - 3j

Question Number 207901    Answers: 1   Comments: 0

Question Number 206779    Answers: 2   Comments: 0

Question Number 206227    Answers: 1   Comments: 0

OA=(4^x ) OB=_7 ^5 and AB=5 units

$${OA}=\left(\overset{{x}} {\mathrm{4}}\right)\:{OB}=_{\mathrm{7}} ^{\mathrm{5}} \:{and}\:{AB}=\mathrm{5}\:{units} \\ $$

Question Number 205820    Answers: 1   Comments: 0

(((√3)),(1) ) and ((1),((√3)) ) vector find θ=?

$$\begin{pmatrix}{\sqrt{\mathrm{3}}}\\{\mathrm{1}}\end{pmatrix}\:\:\mathrm{and}\:\:\begin{pmatrix}{\mathrm{1}}\\{\sqrt{\mathrm{3}}}\end{pmatrix}\:\:\:\mathrm{vector}\:\mathrm{find}\:\theta=? \\ $$

Question Number 205321    Answers: 1   Comments: 0

a^→ =i^ +3j^ +4k^ b^→ =2i^ −3j^ +4k^ c^→ =5i^ −2j^ +4k^ given that p^→ ×b^→ =b^→ ×c^→ and p^→ .b^→ =0 then the value of p^→ (i^ −j^ +k^ )is

$$\overset{\rightarrow} {{a}}=\hat {{i}}+\mathrm{3}\hat {{j}}+\mathrm{4}\hat {{k}}\:\overset{\rightarrow} {{b}}=\mathrm{2}\hat {{i}}−\mathrm{3}\hat {{j}}+\mathrm{4}\hat {{k}}\:\overset{\rightarrow} {{c}}=\mathrm{5}\hat {{i}}−\mathrm{2}\hat {{j}}+\mathrm{4}\hat {{k}}\:{given}\:{that}\:\overset{\rightarrow} {{p}}×\overset{\rightarrow} {{b}}=\overset{\rightarrow} {{b}}×\overset{\rightarrow} {{c}}\:{and}\:\overset{\rightarrow} {{p}}.\overset{\rightarrow} {{b}}=\mathrm{0}\:{then}\:{the}\:{value}\:{of}\:\overset{\rightarrow} {{p}}\left(\hat {{i}}−\hat {{j}}+\hat {{k}}\right){is} \\ $$

Question Number 205164    Answers: 1   Comments: 0

Find the determinant: determinant (((1−x),2,3,…,n),(1,(2−x),3,…,n),(1,2,(3−x),…,n),(⋮,⋮,⋮,⋱,⋮),(1,2,3,…,(n−x)))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}: \\ $$$$\begin{vmatrix}{\mathrm{1}−{x}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}−{x}}&{\mathrm{3}}&{\ldots}&{{n}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}−{x}}&{\ldots}&{{n}}\\{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}&{\ldots}&{{n}−{x}}\end{vmatrix} \\ $$

Question Number 205156    Answers: 1   Comments: 0

Find the determinant: determinant ((5,3,0,0,…,0,0),(2,5,3,0,…,0,0),(0,2,5,3,…,0,0),(⋮,⋮,⋮,⋮,⋱,⋮,⋮),(0,0,0,0,…,5,3),(0,0,0,0,…,2,5))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{determinant}: \\ $$$$\begin{vmatrix}{\mathrm{5}}&{\mathrm{3}}&{\mathrm{0}}&{\mathrm{0}}&{\ldots}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{2}}&{\mathrm{5}}&{\mathrm{3}}&{\mathrm{0}}&{\ldots}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{5}}&{\mathrm{3}}&{\ldots}&{\mathrm{0}}&{\mathrm{0}}\\{\vdots}&{\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}&{\vdots}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\ldots}&{\mathrm{5}}&{\mathrm{3}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}&{\ldots}&{\mathrm{2}}&{\mathrm{5}}\end{vmatrix} \\ $$

Question Number 204509    Answers: 0   Comments: 0

Question Number 203419    Answers: 0   Comments: 4

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com