Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 140735 by ZiYangLee last updated on 12/May/21

Using vector method, prove that three  median of a triangle are concurrent.

$$\mathrm{Using}\:\mathrm{vector}\:\mathrm{method},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{three} \\ $$$$\mathrm{median}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{are}\:\mathrm{concurrent}. \\ $$

Answered by MJS_new last updated on 12/May/21

let A= ((0),(0) ) ∧B= ((c),(0) ) ∧C= ((p),(h) )  M_a =((B+C)/2)= ((((c+p)/2)),((h/2)) )     M_b =((A+C)/2)= (((p/2)),((h/2)) )     M_c =((A+B)/2)= (((c/2)),(0) )  v_a =C−B= (((p−c)),(h) )     v_b =A−C= (((−p)),((−h)) )     v_c =B−A= ((c),(0) )  n_a = (((−h)),((p−c)) )     n_b = ((h),((−p)) )     n_c = ((0),(c) )  medians  m_a : X=M_a +λ_a n_a  ⇔ y=((c−p)/h)x−((c^2 −h^2 −p^2 )/(2h))     (I)  m_b : X=M_b +λ_b n_b  ⇔ y=−(p/h)x+((h^2 +p^2 )/(2h))     (II)  m_c : X=M_c +λ_c n_c  ⇔ x=(c/2)  inserting x=(c/2) in both equations I and II we get  the same value for y  y=((−cp+h^2 +p^2 )/(2h))  ⇒ m_a ∩m_b ∩m_c = (((c/2)),(((−cp+h^2 +p^2 )/(2h))) )

$$\mathrm{let}\:{A}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\wedge{B}=\begin{pmatrix}{{c}}\\{\mathrm{0}}\end{pmatrix}\:\wedge{C}=\begin{pmatrix}{{p}}\\{{h}}\end{pmatrix} \\ $$$${M}_{{a}} =\frac{{B}+{C}}{\mathrm{2}}=\begin{pmatrix}{\frac{{c}+{p}}{\mathrm{2}}}\\{\frac{{h}}{\mathrm{2}}}\end{pmatrix}\:\:\:\:\:{M}_{{b}} =\frac{{A}+{C}}{\mathrm{2}}=\begin{pmatrix}{\frac{{p}}{\mathrm{2}}}\\{\frac{{h}}{\mathrm{2}}}\end{pmatrix}\:\:\:\:\:{M}_{{c}} =\frac{{A}+{B}}{\mathrm{2}}=\begin{pmatrix}{\frac{{c}}{\mathrm{2}}}\\{\mathrm{0}}\end{pmatrix} \\ $$$${v}_{{a}} ={C}−{B}=\begin{pmatrix}{{p}−{c}}\\{{h}}\end{pmatrix}\:\:\:\:\:{v}_{{b}} ={A}−{C}=\begin{pmatrix}{−{p}}\\{−{h}}\end{pmatrix}\:\:\:\:\:{v}_{{c}} ={B}−{A}=\begin{pmatrix}{{c}}\\{\mathrm{0}}\end{pmatrix} \\ $$$${n}_{{a}} =\begin{pmatrix}{−{h}}\\{{p}−{c}}\end{pmatrix}\:\:\:\:\:{n}_{{b}} =\begin{pmatrix}{{h}}\\{−{p}}\end{pmatrix}\:\:\:\:\:{n}_{{c}} =\begin{pmatrix}{\mathrm{0}}\\{{c}}\end{pmatrix} \\ $$$$\mathrm{medians} \\ $$$${m}_{{a}} :\:{X}={M}_{{a}} +\lambda_{{a}} {n}_{{a}} \:\Leftrightarrow\:{y}=\frac{{c}−{p}}{{h}}{x}−\frac{{c}^{\mathrm{2}} −{h}^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{2}{h}}\:\:\:\:\:\left({I}\right) \\ $$$${m}_{{b}} :\:{X}={M}_{{b}} +\lambda_{{b}} {n}_{{b}} \:\Leftrightarrow\:{y}=−\frac{{p}}{{h}}{x}+\frac{{h}^{\mathrm{2}} +{p}^{\mathrm{2}} }{\mathrm{2}{h}}\:\:\:\:\:\left({II}\right) \\ $$$${m}_{{c}} :\:{X}={M}_{{c}} +\lambda_{{c}} {n}_{{c}} \:\Leftrightarrow\:{x}=\frac{{c}}{\mathrm{2}} \\ $$$$\mathrm{inserting}\:{x}=\frac{{c}}{\mathrm{2}}\:\mathrm{in}\:\mathrm{both}\:\mathrm{equations}\:{I}\:\mathrm{and}\:{II}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{value}\:\mathrm{for}\:{y} \\ $$$${y}=\frac{−{cp}+{h}^{\mathrm{2}} +{p}^{\mathrm{2}} }{\mathrm{2}{h}} \\ $$$$\Rightarrow\:{m}_{{a}} \cap{m}_{{b}} \cap{m}_{{c}} =\begin{pmatrix}{\frac{{c}}{\mathrm{2}}}\\{\frac{−{cp}+{h}^{\mathrm{2}} +{p}^{\mathrm{2}} }{\mathrm{2}{h}}}\end{pmatrix} \\ $$

Answered by peter frank last updated on 12/May/21

Commented by peter frank last updated on 12/May/21

The median of triangle cuts another  median in ratio (2:1)  from AD→E(((B^→ +C^→ )/2))  P=((1×A+((2(B^→ +C^→ ))/2))/3)=((A^→ +B^→ +C^→ )/3)  from BE→(((A^→ +C^→ )/2))    P=((1×B+((2(A^→ +C^→ ))/2))/3)=((A^→ +B^→ +C^→ )/3)  from FC→(((A^→ +B^→ )/2))  P=((1×C+((2(A^→ +B^→ ))/2))/3)=((A^→ +B^→ +C^→ )/3)  hence its concurent

$${The}\:{median}\:{of}\:{triangle}\:{cuts}\:{another} \\ $$$${median}\:{in}\:{ratio}\:\left(\mathrm{2}:\mathrm{1}\right) \\ $$$${from}\:{AD}\rightarrow{E}\left(\frac{\overset{\rightarrow} {{B}}+\overset{\rightarrow} {{C}}}{\mathrm{2}}\right) \\ $$$${P}=\frac{\mathrm{1}×{A}+\frac{\mathrm{2}\left(\overset{\rightarrow} {{B}}+\overset{\rightarrow} {{C}}\right)}{\mathrm{2}}}{\mathrm{3}}=\frac{\overset{\rightarrow} {{A}}+\overset{\rightarrow} {{B}}+\overset{\rightarrow} {{C}}}{\mathrm{3}} \\ $$$${from}\:{BE}\rightarrow\left(\frac{\overset{\rightarrow} {{A}}+\overset{\rightarrow} {{C}}}{\mathrm{2}}\right) \\ $$$$\:\:{P}=\frac{\mathrm{1}×{B}+\frac{\mathrm{2}\left(\overset{\rightarrow} {{A}}+\overset{\rightarrow} {{C}}\right)}{\mathrm{2}}}{\mathrm{3}}=\frac{\overset{\rightarrow} {{A}}+\overset{\rightarrow} {{B}}+\overset{\rightarrow} {{C}}}{\mathrm{3}} \\ $$$${from}\:{FC}\rightarrow\left(\frac{\overset{\rightarrow} {{A}}+\overset{\rightarrow} {{B}}}{\mathrm{2}}\right) \\ $$$${P}=\frac{\mathrm{1}×{C}+\frac{\mathrm{2}\left(\overset{\rightarrow} {{A}}+\overset{\rightarrow} {{B}}\right)}{\mathrm{2}}}{\mathrm{3}}=\frac{\overset{\rightarrow} {{A}}+\overset{\rightarrow} {{B}}+\overset{\rightarrow} {{C}}}{\mathrm{3}} \\ $$$${hence}\:{its}\:{concurent} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com