Question Number 46188 by rahul 19 last updated on 22/Oct/18 | ||
![]() | ||
$${Using}\:{dimensional}\:{analysis}\:, \\ $$$${find}\:{out}\:{value}\:{of}\:{n}\:{in}\:{given}\:{expression}: \\ $$$$\:\:\int\frac{{dx}}{\sqrt{\mathrm{2}{ax}−{x}^{\mathrm{2}} }}\:=\:{a}^{{n}} \mathrm{sin}^{−\mathrm{1}} \left(\frac{{x}}{{a}}\:−\mathrm{1}\right). \\ $$ | ||
Commented by rahul 19 last updated on 22/Oct/18 | ||
![]() | ||
Commented by rahul 19 last updated on 22/Oct/18 | ||
![]() | ||
$${plss}\:{explain}\:{how}\:{n}=\mathrm{0}\:{in}\:{last}\:{line}? \\ $$ | ||
Commented by MrW3 last updated on 22/Oct/18 | ||
![]() | ||
$${dimension}\:{of}\:{left}\:{side}\:{is}\:\left[{L}^{\mathrm{0}} \right],{i}.{e}.\:{no} \\ $$$${dimension} \\ $$$$ \\ $$$${dimension}\:{of}\:{right}\:{side}\:{is}\:\left[{L}^{{n}} \right],\:{it} \\ $$$${should}\:{also}\:{be}\:{no}\:{dimension} \\ $$$$ \\ $$$$\Rightarrow{n}=\mathrm{0} \\ $$ | ||
Commented by rahul 19 last updated on 22/Oct/18 | ||
Thanks sir ! I got confused seeing zero in denominator!! Sir, do you have idea to how much extent we can apply dimensional analysis in integration? I'm seeing it for 1st time. | ||
Commented by maxmathsup by imad last updated on 22/Oct/18 | ||
![]() | ||
$${let}\:{I}\:=\:\int\:\:\frac{{dx}}{\sqrt{−{x}^{\mathrm{2}} \:+\mathrm{2}{ax}}}\:\Rightarrow{I}\:=\:\int\:\:\:\frac{{dx}}{\sqrt{−\left({x}^{\mathrm{2}} −\mathrm{2}{ax}\:+{a}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}} \\ $$$$=\:\int\:\:\:\frac{{dx}}{\sqrt{{a}^{\mathrm{2}} −\left({x}−{a}\right)^{\mathrm{2}} }}\:=_{{x}−{a}={a}\:{sint}} \:\:\:\int\:\:\:\frac{{acost}}{{acost}}{dt}\:=\:\int\:{dt}\:={t}\:+{c} \\ $$$$=\:{arcsin}\left(\frac{{x}−{a}}{{a}}\right)\:\:\:+{c}\:\:={arcsin}\left(\frac{{x}}{{a}}−\mathrm{1}\right)+{c}\:\Rightarrow{n}=\mathrm{0} \\ $$ | ||