Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 187606 by otchereabdullai last updated on 19/Feb/23

 Use polar coordinate to find   lim(x,y)→(0,0) ((x^2 −xy^2 )/(x^2 +y^2 ))

$$\:{Use}\:{polar}\:{coordinate}\:{to}\:{find}\: \\ $$$${lim}\left({x},{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)\:\frac{{x}^{\mathrm{2}} −{xy}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$

Answered by a.lgnaoui last updated on 19/Feb/23

we can try with Hopital  rule  lim_(x→a) ((f(x))/(g(x)))=lim_(x→a) ((f^′ (x))/(g^′ (x)))  with:     f(x)=x^2 −xy                    g(x)=x^2 +y^2

$${we}\:{can}\:{try}\:{with}\:{Hopital} \\ $$$${rule} \\ $$$${lim}_{{x}\rightarrow{a}} \frac{{f}\left({x}\right)}{{g}\left({x}\right)}={lim}_{{x}\rightarrow{a}} \frac{{f}^{'} \left({x}\right)}{{g}^{'} \left({x}\right)} \\ $$$${with}:\:\:\:\:\:{f}\left({x}\right)={x}^{\mathrm{2}} −{xy} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{g}\left({x}\right)={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$ \\ $$

Answered by mr W last updated on 20/Feb/23

x=r cos θ  y=r sin θ  ((x^2 −xy^2 )/(x^2 +y^2 ))  =((r^2 cos^2  θ−r cos θ r^2 sin^2  θ)/(r^2 cos^2  θ+r^2 sin^2  θ))  =cos^2  θ−r cos θsin^2  θ  lim_(x→0,y→0) ((x^2 −xy^2 )/(x^2 +y^2 ))  =lim_(r→0,θ→0) (cos^2  θ−r cos θsin^2  θ)  =cos^2  0−0  =1

$${x}={r}\:\mathrm{cos}\:\theta \\ $$$${y}={r}\:\mathrm{sin}\:\theta \\ $$$$\frac{{x}^{\mathrm{2}} −{xy}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$=\frac{{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta−{r}\:\mathrm{cos}\:\theta\:{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta+{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta} \\ $$$$=\mathrm{cos}^{\mathrm{2}} \:\theta−{r}\:\mathrm{cos}\:\theta\mathrm{sin}^{\mathrm{2}} \:\theta \\ $$$$\underset{{x}\rightarrow\mathrm{0},{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} −{xy}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} } \\ $$$$=\underset{{r}\rightarrow\mathrm{0},\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{cos}^{\mathrm{2}} \:\theta−{r}\:\mathrm{cos}\:\theta\mathrm{sin}^{\mathrm{2}} \:\theta\right) \\ $$$$=\mathrm{cos}^{\mathrm{2}} \:\mathrm{0}−\mathrm{0} \\ $$$$=\mathrm{1} \\ $$

Commented by otchereabdullai last updated on 20/Feb/23

Am much grateful prof W

$${Am}\:{much}\:{grateful}\:{prof}\:{W} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com