Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 201533 by Rodier97 last updated on 08/Dec/23

                 Un = ln (cos (1/2^n ) )      show  that Un ≤0

$$ \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{Un}\:=\:{ln}\:\left({cos}\:\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\right) \\ $$$$\:\:\:\:{show}\:\:{that}\:{Un}\:\leqslant\mathrm{0} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by deleteduser1 last updated on 08/Dec/23

0≤cos((1/(2n)))≤1=e^0 ⇒U_n ≤ln(e^0 )=0

$$\mathrm{0}\leqslant{cos}\left(\frac{\mathrm{1}}{\mathrm{2}{n}}\right)\leqslant\mathrm{1}={e}^{\mathrm{0}} \Rightarrow{U}_{{n}} \leqslant{ln}\left({e}^{\mathrm{0}} \right)=\mathrm{0} \\ $$

Answered by Mathspace last updated on 08/Dec/23

we have 0≤(1/2^n )<(π/2)  ∀n≥1 ⇒  0<cos((1/2^n ))≤1 ⇒ln(cos(1/2^n ))≤0 ⇒  u_n ≤0

$${we}\:{have}\:\mathrm{0}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}} }<\frac{\pi}{\mathrm{2}}\:\:\forall{n}\geqslant\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{0}<{cos}\left(\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\leqslant\mathrm{1}\:\Rightarrow{ln}\left({cos}\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\right)\leqslant\mathrm{0}\:\Rightarrow \\ $$$${u}_{{n}} \leqslant\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com